Cargando…
A New Technique for Broadband Matching of Open-Ended Rectangular Waveguide Radiator
The maximum reflection at an open end of a standard rectangular waveguide is about −10 dB in its operating frequency range. It is often used without matching. For critical applications, it is desirable to further reduce the reflection coefficient. In this paper, a new technique is presented for the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674208/ https://www.ncbi.nlm.nih.gov/pubmed/38005561 http://dx.doi.org/10.3390/s23229176 |
Sumario: | The maximum reflection at an open end of a standard rectangular waveguide is about −10 dB in its operating frequency range. It is often used without matching. For critical applications, it is desirable to further reduce the reflection coefficient. In this paper, a new technique is presented for the broadband impedance matching of an open-ended rectangular waveguide. The proposed technique employs three thin capacitive matching elements placed at proper intervals via a low-loss dielectric material. The capacitance of, and distance between, the matching elements are optimized for broadband impedance matching using a simulation tool. Based on the proposed technique, two design examples are presented for the matching of a WR75 waveguide radiator. A reflection coefficient of less than −16 dB and −20 dB has been achieved over a ratio bandwidth of 2.13:1 and 1.62:1, respectively. |
---|