Cargando…
A Lightweight Human Fall Detection Network
The rising issue of an aging population has intensified the focus on the health concerns of the elderly. Among these concerns, falls have emerged as a predominant health threat for this demographic. The YOLOv5 family represents the forefront of techniques for human fall detection. However, this algo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674212/ https://www.ncbi.nlm.nih.gov/pubmed/38005456 http://dx.doi.org/10.3390/s23229069 |
_version_ | 1785140775204421632 |
---|---|
author | Kan, Xi Zhu, Shenghao Zhang, Yonghong Qian, Chengshan |
author_facet | Kan, Xi Zhu, Shenghao Zhang, Yonghong Qian, Chengshan |
author_sort | Kan, Xi |
collection | PubMed |
description | The rising issue of an aging population has intensified the focus on the health concerns of the elderly. Among these concerns, falls have emerged as a predominant health threat for this demographic. The YOLOv5 family represents the forefront of techniques for human fall detection. However, this algorithm, although advanced, grapples with issues such as computational demands, challenges in hardware integration, and vulnerability to occlusions in the designated target group. To address these limitations, we introduce a pioneering lightweight approach named CGNS-YOLO for human fall detection. Our method incorporates both the GSConv module and the GDCN module to reconfigure the neck network of YOLOv5s. The objective behind this modification is to diminish the model size, curtail floating-point computations during feature channel fusion, and bolster feature extraction efficacy, thereby enhancing hardware adaptability. We also integrate a normalization-based attention module (NAM) into the framework, which concentrates on salient fall-related data and deemphasizes less pertinent information. This strategic refinement augments the algorithm’s precision. By embedding the SCYLLA Intersection over Union (SIoU) loss function, our model benefits from faster convergence and heightened detection precision. We evaluated our model using the Multicam dataset and the Le2i Fall Detection dataset. Our findings indicate a 1.2% enhancement in detection accuracy compared with the conventional YOLOv5s framework. Notably, our model realized a 20.3% decrease in parameter tally and a 29.6% drop in floating-point operations. A comprehensive instance analysis and comparative assessments underscore the method’s superiority and efficacy. |
format | Online Article Text |
id | pubmed-10674212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106742122023-11-09 A Lightweight Human Fall Detection Network Kan, Xi Zhu, Shenghao Zhang, Yonghong Qian, Chengshan Sensors (Basel) Article The rising issue of an aging population has intensified the focus on the health concerns of the elderly. Among these concerns, falls have emerged as a predominant health threat for this demographic. The YOLOv5 family represents the forefront of techniques for human fall detection. However, this algorithm, although advanced, grapples with issues such as computational demands, challenges in hardware integration, and vulnerability to occlusions in the designated target group. To address these limitations, we introduce a pioneering lightweight approach named CGNS-YOLO for human fall detection. Our method incorporates both the GSConv module and the GDCN module to reconfigure the neck network of YOLOv5s. The objective behind this modification is to diminish the model size, curtail floating-point computations during feature channel fusion, and bolster feature extraction efficacy, thereby enhancing hardware adaptability. We also integrate a normalization-based attention module (NAM) into the framework, which concentrates on salient fall-related data and deemphasizes less pertinent information. This strategic refinement augments the algorithm’s precision. By embedding the SCYLLA Intersection over Union (SIoU) loss function, our model benefits from faster convergence and heightened detection precision. We evaluated our model using the Multicam dataset and the Le2i Fall Detection dataset. Our findings indicate a 1.2% enhancement in detection accuracy compared with the conventional YOLOv5s framework. Notably, our model realized a 20.3% decrease in parameter tally and a 29.6% drop in floating-point operations. A comprehensive instance analysis and comparative assessments underscore the method’s superiority and efficacy. MDPI 2023-11-09 /pmc/articles/PMC10674212/ /pubmed/38005456 http://dx.doi.org/10.3390/s23229069 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kan, Xi Zhu, Shenghao Zhang, Yonghong Qian, Chengshan A Lightweight Human Fall Detection Network |
title | A Lightweight Human Fall Detection Network |
title_full | A Lightweight Human Fall Detection Network |
title_fullStr | A Lightweight Human Fall Detection Network |
title_full_unstemmed | A Lightweight Human Fall Detection Network |
title_short | A Lightweight Human Fall Detection Network |
title_sort | lightweight human fall detection network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674212/ https://www.ncbi.nlm.nih.gov/pubmed/38005456 http://dx.doi.org/10.3390/s23229069 |
work_keys_str_mv | AT kanxi alightweighthumanfalldetectionnetwork AT zhushenghao alightweighthumanfalldetectionnetwork AT zhangyonghong alightweighthumanfalldetectionnetwork AT qianchengshan alightweighthumanfalldetectionnetwork AT kanxi lightweighthumanfalldetectionnetwork AT zhushenghao lightweighthumanfalldetectionnetwork AT zhangyonghong lightweighthumanfalldetectionnetwork AT qianchengshan lightweighthumanfalldetectionnetwork |