Cargando…
A Lightweight Human Fall Detection Network
The rising issue of an aging population has intensified the focus on the health concerns of the elderly. Among these concerns, falls have emerged as a predominant health threat for this demographic. The YOLOv5 family represents the forefront of techniques for human fall detection. However, this algo...
Autores principales: | Kan, Xi, Zhu, Shenghao, Zhang, Yonghong, Qian, Chengshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674212/ https://www.ncbi.nlm.nih.gov/pubmed/38005456 http://dx.doi.org/10.3390/s23229069 |
Ejemplares similares
-
TinyFallNet: A Lightweight Pre-Impact Fall Detection Model
por: Koo, Bummo, et al.
Publicado: (2023) -
A Lightweight Subgraph-Based Deep Learning Approach for Fall Recognition
por: Zhao, Zhenxiao, et al.
Publicado: (2022) -
Towards Lightweight Neural Networks for Garbage Object Detection
por: Cai, Xinchen, et al.
Publicado: (2022) -
Lightweight multi-scale network for small object detection
por: Li, Li, et al.
Publicado: (2022) -
A new lightweight deep neural network for surface scratch detection
por: Li, Wei, et al.
Publicado: (2022)