Cargando…
PSGL-1, a Strategic Biomarker for Pathological Conditions in HIV Infection: A Hypothesis Review
P-selectin glycoprotein ligand-1 (PSGL-1) has been established to be a cell adhesion molecule that is involved in the cellular rolling mechanism and the extravasation cascade, enabling the recruitment of immune cells to sites of inflammation. In recent years, researchers have established that PSGL-1...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674231/ https://www.ncbi.nlm.nih.gov/pubmed/38005875 http://dx.doi.org/10.3390/v15112197 |
Sumario: | P-selectin glycoprotein ligand-1 (PSGL-1) has been established to be a cell adhesion molecule that is involved in the cellular rolling mechanism and the extravasation cascade, enabling the recruitment of immune cells to sites of inflammation. In recent years, researchers have established that PSGL-1 also functions as an HIV restriction factor. PSGL-1 has been shown to inhibit the HIV reverse transcription process and inhibit the infectivity of HIV virions produced by cells expressing PSGL-1. Cumulative evidence gleaned from contemporary literature suggests that PSGL-1 expression negatively affects the functions of immune cells, particularly T-cells, which are critical participants in the defense against HIV infection. Indeed, some researchers have observed that PSGL-1 expression and signaling provokes T-cell exhaustion. Additionally, it has been established that PSGL-1 may also mediate virus capture and subsequent transfer to permissive cells. We therefore believe that, in addition to its beneficial roles, such as its function as a proinflammatory molecule and an HIV restriction factor, PSGL-1 expression during HIV infection may be disadvantageous and may potentially predict HIV disease progression. In this hypothesis review, we provide substantial discussions with respect to the possibility of using PSGL-1 to predict the potential development of particular pathological conditions commonly seen during HIV infection. Specifically, we speculate that PSGL-1 may possibly be a reliable biomarker for immunological status, inflammation/translocation, cell exhaustion, and the development of HIV-related cancers. Future investigations directed towards our hypotheses may help to evolve innovative strategies for the monitoring and/or treatment of HIV-infected individuals. |
---|