Cargando…
RST: Rough Set Transformer for Point Cloud Learning
Point cloud data generated by LiDAR sensors play a critical role in 3D sensing systems, with applications encompassing object classification, part segmentation, and point cloud recognition. Leveraging the global learning capacity of dot product attention, transformers have recently exhibited outstan...
Autores principales: | Sun, Xinwei, Zeng, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674457/ https://www.ncbi.nlm.nih.gov/pubmed/38005431 http://dx.doi.org/10.3390/s23229042 |
Ejemplares similares
-
Regulatory role of the RstB‐RstA system in adhesion, biofilm production, motility, and hemolysis
por: Huang, Lixing, et al.
Publicado: (2018) -
The ferumoxytol in renal insufficiency study (FiRST)
por: Vemulapalli, Sreekanth, et al.
Publicado: (2013) -
The Two-Component System RstA/RstB Regulates Expression of Multiple Efflux Pumps and Influences Anaerobic Nitrate Respiration in Pseudomonas fluorescens
por: Li, Di-Yin, et al.
Publicado: (2021) -
Muon performance and related ATLAS fi rst physics
por: Moreno Llacer, M
Publicado: (2010) -
RST Digital Algorithm for Controlling the LHC Magnet Current
por: Bordry, Frederick, et al.
Publicado: (1998)