Cargando…
Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification
This paper presents a comparative study that explores the performance of various meta-heuristics employed for Optimal Signal Design, specifically focusing on estimating parameters in nonlinear systems. The study introduces the Robust Sub-Optimal Excitation Signal Generation and Optimal Parameter Est...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674472/ https://www.ncbi.nlm.nih.gov/pubmed/38005473 http://dx.doi.org/10.3390/s23229085 |
_version_ | 1785140836183310336 |
---|---|
author | dos Santos Neto, Accacio Ferreira dos Santos, Murillo Ferreira da Silva, Mathaus Ferreira Honório, Leonardo de Mello de Oliveira, Edimar José Neto, Edvaldo Soares Araújo |
author_facet | dos Santos Neto, Accacio Ferreira dos Santos, Murillo Ferreira da Silva, Mathaus Ferreira Honório, Leonardo de Mello de Oliveira, Edimar José Neto, Edvaldo Soares Araújo |
author_sort | dos Santos Neto, Accacio Ferreira |
collection | PubMed |
description | This paper presents a comparative study that explores the performance of various meta-heuristics employed for Optimal Signal Design, specifically focusing on estimating parameters in nonlinear systems. The study introduces the Robust Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation (rSOESGOPE) methodology, which is originally derived from the well-known Particle Swarm Optimization (PSO) algorithm. Through a real-life case study involving an Autonomous Surface Vessel (ASV) equipped with three Degrees of Freedom (DoFs) and an aerial holonomic propulsion system, the effectiveness of different meta-heuristics is thoroughly evaluated. By conducting an in-depth analysis and comparison of the obtained results from the diverse meta-heuristics, this study offers valuable insights for selecting the most suitable optimization technique for parameter estimation in nonlinear systems. Researchers and experimental tests in the field can benefit from the comprehensive examination of these techniques, aiding them in making informed decisions about the optimal approach for optimizing parameter estimation in nonlinear systems. |
format | Online Article Text |
id | pubmed-10674472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106744722023-11-10 Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification dos Santos Neto, Accacio Ferreira dos Santos, Murillo Ferreira da Silva, Mathaus Ferreira Honório, Leonardo de Mello de Oliveira, Edimar José Neto, Edvaldo Soares Araújo Sensors (Basel) Article This paper presents a comparative study that explores the performance of various meta-heuristics employed for Optimal Signal Design, specifically focusing on estimating parameters in nonlinear systems. The study introduces the Robust Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation (rSOESGOPE) methodology, which is originally derived from the well-known Particle Swarm Optimization (PSO) algorithm. Through a real-life case study involving an Autonomous Surface Vessel (ASV) equipped with three Degrees of Freedom (DoFs) and an aerial holonomic propulsion system, the effectiveness of different meta-heuristics is thoroughly evaluated. By conducting an in-depth analysis and comparison of the obtained results from the diverse meta-heuristics, this study offers valuable insights for selecting the most suitable optimization technique for parameter estimation in nonlinear systems. Researchers and experimental tests in the field can benefit from the comprehensive examination of these techniques, aiding them in making informed decisions about the optimal approach for optimizing parameter estimation in nonlinear systems. MDPI 2023-11-10 /pmc/articles/PMC10674472/ /pubmed/38005473 http://dx.doi.org/10.3390/s23229085 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article dos Santos Neto, Accacio Ferreira dos Santos, Murillo Ferreira da Silva, Mathaus Ferreira Honório, Leonardo de Mello de Oliveira, Edimar José Neto, Edvaldo Soares Araújo Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification |
title | Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification |
title_full | Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification |
title_fullStr | Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification |
title_full_unstemmed | Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification |
title_short | Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification |
title_sort | performance comparison of meta-heuristics applied to optimal signal design for parameter identification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674472/ https://www.ncbi.nlm.nih.gov/pubmed/38005473 http://dx.doi.org/10.3390/s23229085 |
work_keys_str_mv | AT dossantosnetoaccacioferreira performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification AT dossantosmurilloferreira performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification AT dasilvamathausferreira performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification AT honorioleonardodemello performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification AT deoliveiraedimarjose performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification AT netoedvaldosoaresaraujo performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification |