Cargando…

Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification

This paper presents a comparative study that explores the performance of various meta-heuristics employed for Optimal Signal Design, specifically focusing on estimating parameters in nonlinear systems. The study introduces the Robust Sub-Optimal Excitation Signal Generation and Optimal Parameter Est...

Descripción completa

Detalles Bibliográficos
Autores principales: dos Santos Neto, Accacio Ferreira, dos Santos, Murillo Ferreira, da Silva, Mathaus Ferreira, Honório, Leonardo de Mello, de Oliveira, Edimar José, Neto, Edvaldo Soares Araújo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674472/
https://www.ncbi.nlm.nih.gov/pubmed/38005473
http://dx.doi.org/10.3390/s23229085
_version_ 1785140836183310336
author dos Santos Neto, Accacio Ferreira
dos Santos, Murillo Ferreira
da Silva, Mathaus Ferreira
Honório, Leonardo de Mello
de Oliveira, Edimar José
Neto, Edvaldo Soares Araújo
author_facet dos Santos Neto, Accacio Ferreira
dos Santos, Murillo Ferreira
da Silva, Mathaus Ferreira
Honório, Leonardo de Mello
de Oliveira, Edimar José
Neto, Edvaldo Soares Araújo
author_sort dos Santos Neto, Accacio Ferreira
collection PubMed
description This paper presents a comparative study that explores the performance of various meta-heuristics employed for Optimal Signal Design, specifically focusing on estimating parameters in nonlinear systems. The study introduces the Robust Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation (rSOESGOPE) methodology, which is originally derived from the well-known Particle Swarm Optimization (PSO) algorithm. Through a real-life case study involving an Autonomous Surface Vessel (ASV) equipped with three Degrees of Freedom (DoFs) and an aerial holonomic propulsion system, the effectiveness of different meta-heuristics is thoroughly evaluated. By conducting an in-depth analysis and comparison of the obtained results from the diverse meta-heuristics, this study offers valuable insights for selecting the most suitable optimization technique for parameter estimation in nonlinear systems. Researchers and experimental tests in the field can benefit from the comprehensive examination of these techniques, aiding them in making informed decisions about the optimal approach for optimizing parameter estimation in nonlinear systems.
format Online
Article
Text
id pubmed-10674472
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106744722023-11-10 Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification dos Santos Neto, Accacio Ferreira dos Santos, Murillo Ferreira da Silva, Mathaus Ferreira Honório, Leonardo de Mello de Oliveira, Edimar José Neto, Edvaldo Soares Araújo Sensors (Basel) Article This paper presents a comparative study that explores the performance of various meta-heuristics employed for Optimal Signal Design, specifically focusing on estimating parameters in nonlinear systems. The study introduces the Robust Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation (rSOESGOPE) methodology, which is originally derived from the well-known Particle Swarm Optimization (PSO) algorithm. Through a real-life case study involving an Autonomous Surface Vessel (ASV) equipped with three Degrees of Freedom (DoFs) and an aerial holonomic propulsion system, the effectiveness of different meta-heuristics is thoroughly evaluated. By conducting an in-depth analysis and comparison of the obtained results from the diverse meta-heuristics, this study offers valuable insights for selecting the most suitable optimization technique for parameter estimation in nonlinear systems. Researchers and experimental tests in the field can benefit from the comprehensive examination of these techniques, aiding them in making informed decisions about the optimal approach for optimizing parameter estimation in nonlinear systems. MDPI 2023-11-10 /pmc/articles/PMC10674472/ /pubmed/38005473 http://dx.doi.org/10.3390/s23229085 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
dos Santos Neto, Accacio Ferreira
dos Santos, Murillo Ferreira
da Silva, Mathaus Ferreira
Honório, Leonardo de Mello
de Oliveira, Edimar José
Neto, Edvaldo Soares Araújo
Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification
title Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification
title_full Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification
title_fullStr Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification
title_full_unstemmed Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification
title_short Performance Comparison of Meta-Heuristics Applied to Optimal Signal Design for Parameter Identification
title_sort performance comparison of meta-heuristics applied to optimal signal design for parameter identification
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674472/
https://www.ncbi.nlm.nih.gov/pubmed/38005473
http://dx.doi.org/10.3390/s23229085
work_keys_str_mv AT dossantosnetoaccacioferreira performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification
AT dossantosmurilloferreira performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification
AT dasilvamathausferreira performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification
AT honorioleonardodemello performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification
AT deoliveiraedimarjose performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification
AT netoedvaldosoaresaraujo performancecomparisonofmetaheuristicsappliedtooptimalsignaldesignforparameteridentification