Cargando…
Improved Methods for Fourier-Based Microwave Imaging
Fourier-based imaging has been widely adopted for microwave imaging thanks to its efficiency in terms of computational complexity without compromising image resolution. Together with other backpropagation imaging algorithms like delay-and-sum (DAS), they are based on a far-field approach to the elec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674512/ https://www.ncbi.nlm.nih.gov/pubmed/38005636 http://dx.doi.org/10.3390/s23229250 |
Sumario: | Fourier-based imaging has been widely adopted for microwave imaging thanks to its efficiency in terms of computational complexity without compromising image resolution. Together with other backpropagation imaging algorithms like delay-and-sum (DAS), they are based on a far-field approach to the electromagnetic expression relating to fields and sources. To improve the accuracy of these techniques, this contribution presents a modified version of the well-known Fourier-based algorithm by taking into account the field radiated by the Tx/Rx antennas of the microwave imaging system. The impact on the imaged targets is discussed, providing a quantitative and qualitative analysis. The performance of the proposed method for subsampled microwave imaging scenarios is compared against other well-known aliasing mitigation methods. |
---|