Cargando…

Improved Methods for Fourier-Based Microwave Imaging

Fourier-based imaging has been widely adopted for microwave imaging thanks to its efficiency in terms of computational complexity without compromising image resolution. Together with other backpropagation imaging algorithms like delay-and-sum (DAS), they are based on a far-field approach to the elec...

Descripción completa

Detalles Bibliográficos
Autores principales: Alvarez López, Yuri, Las-Heras Andrés, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674512/
https://www.ncbi.nlm.nih.gov/pubmed/38005636
http://dx.doi.org/10.3390/s23229250
Descripción
Sumario:Fourier-based imaging has been widely adopted for microwave imaging thanks to its efficiency in terms of computational complexity without compromising image resolution. Together with other backpropagation imaging algorithms like delay-and-sum (DAS), they are based on a far-field approach to the electromagnetic expression relating to fields and sources. To improve the accuracy of these techniques, this contribution presents a modified version of the well-known Fourier-based algorithm by taking into account the field radiated by the Tx/Rx antennas of the microwave imaging system. The impact on the imaged targets is discussed, providing a quantitative and qualitative analysis. The performance of the proposed method for subsampled microwave imaging scenarios is compared against other well-known aliasing mitigation methods.