Cargando…
Potassium Spraying Preharvest and Nanocoating Postharvest Improve the Quality and Extend the Storage Period for Acid Lime (Citrus aurantifolia Swingle) Fruits
Citrus fruits are one of the most abundant crops globally in more than 140 countries throughout the world. Acid lime (Citrus aurantifolia swingle) is one of the citrus fruits which popularly has rich nutritional and therapeutic features. The storage period is the important factor that affects the ec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674589/ https://www.ncbi.nlm.nih.gov/pubmed/38005744 http://dx.doi.org/10.3390/plants12223848 |
_version_ | 1785149725467475968 |
---|---|
author | Beheiry, Hamada R. Hasanin, Mohamed S. Abdelkhalek, Amr Hussein, Hamdy A. Z. |
author_facet | Beheiry, Hamada R. Hasanin, Mohamed S. Abdelkhalek, Amr Hussein, Hamdy A. Z. |
author_sort | Beheiry, Hamada R. |
collection | PubMed |
description | Citrus fruits are one of the most abundant crops globally in more than 140 countries throughout the world. Acid lime (Citrus aurantifolia swingle) is one of the citrus fruits which popularly has rich nutritional and therapeutic features. The storage period is the important factor that affects the economic and quality properties of this fruit. This study aims to demonstrate the enhancing effect of preharvest spraying with potassium, in addition to the postharvest dipping of fruits in some edible coatings, on the quality and storability of acid lime fruits. Preharvest spraying with organic and mineral forms of potassium, namely, potassium thiosulfate 1.75 g/L (S) and potassium tartrate 2 g/L (T), were carried out at three different times, in May, June, and July. On the other hand, postharvest treatments were carried out via dipping fruits in different types of biopolymers (carboxymethyl cellulose (E2) and gum arabic (E3)) and carboxymethyl cellulose/gum arabic composite (E4) as well as nanocoating formulation based on both biopolymers and doped zinc oxide nanoparticles (ZnONPs) (E1), which were prepared via acid lime peel waste extract. Herein, the physiochemical and morphological characterizations confirmed that the nanocoating was prepared at the nanoscale and doped with green synthesis ZnONPs, with recorded sizes of around 80 and 20 nm, respectively. Preharvest spraying with potassium tartrate enhanced fruit traits (Spraying with potassium tartrate at pre-harvest and nanocoating dipping at post-harvest (TE1), spraying with potassium tartrate at pre-harvest and carboxy methyl cellulose dipping at post-harvest (TE2), spraying with potassium tartrate at pre-harvest and gum arabic dipping at post-harvest (TE3) and spraying with potassium tartrate at pre-harvest and carboxymethyl cellulose/gum arabic composite dipping at post-harvest (TE4)), followed by potassium thiosulfate (spraying with potassium thiosulfate at pre-harvest and nanocoating dipping at post-harvest (SE1), spraying with potassium thiosulfate at pre-harvest and carboxy methyl cellulose dipping at post-harvest (SE2), spraying with potassium thiosulfate at pre-harvest and gum arabic dipping at post-harvest (SE3) and spraying with potassium thiosulfate at pre-harvest and carboxymethyl cellulose/gum arabic dipping at post-harvest (SE4)), compared to control. For postharvest treatments, E1 improved fruit quality, followed by E2, E4, and E3, respectively. The integration between pre- and postharvest treatments showed a clear superiority of TE2, followed by TE4, SE1, and SE2, respectively. |
format | Online Article Text |
id | pubmed-10674589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106745892023-11-14 Potassium Spraying Preharvest and Nanocoating Postharvest Improve the Quality and Extend the Storage Period for Acid Lime (Citrus aurantifolia Swingle) Fruits Beheiry, Hamada R. Hasanin, Mohamed S. Abdelkhalek, Amr Hussein, Hamdy A. Z. Plants (Basel) Article Citrus fruits are one of the most abundant crops globally in more than 140 countries throughout the world. Acid lime (Citrus aurantifolia swingle) is one of the citrus fruits which popularly has rich nutritional and therapeutic features. The storage period is the important factor that affects the economic and quality properties of this fruit. This study aims to demonstrate the enhancing effect of preharvest spraying with potassium, in addition to the postharvest dipping of fruits in some edible coatings, on the quality and storability of acid lime fruits. Preharvest spraying with organic and mineral forms of potassium, namely, potassium thiosulfate 1.75 g/L (S) and potassium tartrate 2 g/L (T), were carried out at three different times, in May, June, and July. On the other hand, postharvest treatments were carried out via dipping fruits in different types of biopolymers (carboxymethyl cellulose (E2) and gum arabic (E3)) and carboxymethyl cellulose/gum arabic composite (E4) as well as nanocoating formulation based on both biopolymers and doped zinc oxide nanoparticles (ZnONPs) (E1), which were prepared via acid lime peel waste extract. Herein, the physiochemical and morphological characterizations confirmed that the nanocoating was prepared at the nanoscale and doped with green synthesis ZnONPs, with recorded sizes of around 80 and 20 nm, respectively. Preharvest spraying with potassium tartrate enhanced fruit traits (Spraying with potassium tartrate at pre-harvest and nanocoating dipping at post-harvest (TE1), spraying with potassium tartrate at pre-harvest and carboxy methyl cellulose dipping at post-harvest (TE2), spraying with potassium tartrate at pre-harvest and gum arabic dipping at post-harvest (TE3) and spraying with potassium tartrate at pre-harvest and carboxymethyl cellulose/gum arabic composite dipping at post-harvest (TE4)), followed by potassium thiosulfate (spraying with potassium thiosulfate at pre-harvest and nanocoating dipping at post-harvest (SE1), spraying with potassium thiosulfate at pre-harvest and carboxy methyl cellulose dipping at post-harvest (SE2), spraying with potassium thiosulfate at pre-harvest and gum arabic dipping at post-harvest (SE3) and spraying with potassium thiosulfate at pre-harvest and carboxymethyl cellulose/gum arabic dipping at post-harvest (SE4)), compared to control. For postharvest treatments, E1 improved fruit quality, followed by E2, E4, and E3, respectively. The integration between pre- and postharvest treatments showed a clear superiority of TE2, followed by TE4, SE1, and SE2, respectively. MDPI 2023-11-14 /pmc/articles/PMC10674589/ /pubmed/38005744 http://dx.doi.org/10.3390/plants12223848 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Beheiry, Hamada R. Hasanin, Mohamed S. Abdelkhalek, Amr Hussein, Hamdy A. Z. Potassium Spraying Preharvest and Nanocoating Postharvest Improve the Quality and Extend the Storage Period for Acid Lime (Citrus aurantifolia Swingle) Fruits |
title | Potassium Spraying Preharvest and Nanocoating Postharvest Improve the Quality and Extend the Storage Period for Acid Lime (Citrus aurantifolia Swingle) Fruits |
title_full | Potassium Spraying Preharvest and Nanocoating Postharvest Improve the Quality and Extend the Storage Period for Acid Lime (Citrus aurantifolia Swingle) Fruits |
title_fullStr | Potassium Spraying Preharvest and Nanocoating Postharvest Improve the Quality and Extend the Storage Period for Acid Lime (Citrus aurantifolia Swingle) Fruits |
title_full_unstemmed | Potassium Spraying Preharvest and Nanocoating Postharvest Improve the Quality and Extend the Storage Period for Acid Lime (Citrus aurantifolia Swingle) Fruits |
title_short | Potassium Spraying Preharvest and Nanocoating Postharvest Improve the Quality and Extend the Storage Period for Acid Lime (Citrus aurantifolia Swingle) Fruits |
title_sort | potassium spraying preharvest and nanocoating postharvest improve the quality and extend the storage period for acid lime (citrus aurantifolia swingle) fruits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674589/ https://www.ncbi.nlm.nih.gov/pubmed/38005744 http://dx.doi.org/10.3390/plants12223848 |
work_keys_str_mv | AT beheiryhamadar potassiumsprayingpreharvestandnanocoatingpostharvestimprovethequalityandextendthestorageperiodforacidlimecitrusaurantifoliaswinglefruits AT hasaninmohameds potassiumsprayingpreharvestandnanocoatingpostharvestimprovethequalityandextendthestorageperiodforacidlimecitrusaurantifoliaswinglefruits AT abdelkhalekamr potassiumsprayingpreharvestandnanocoatingpostharvestimprovethequalityandextendthestorageperiodforacidlimecitrusaurantifoliaswinglefruits AT husseinhamdyaz potassiumsprayingpreharvestandnanocoatingpostharvestimprovethequalityandextendthestorageperiodforacidlimecitrusaurantifoliaswinglefruits |