Cargando…
LLM Multimodal Traffic Accident Forecasting
With the rise in traffic congestion in urban centers, predicting accidents has become paramount for city planning and public safety. This work comprehensively studied the efficacy of modern deep learning (DL) methods in forecasting traffic accidents and enhancing Level-4 and Level-5 (L-4 and L-5) dr...
Autores principales: | de Zarzà, I., de Curtò, J., Roig, Gemma, Calafate, Carlos T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674612/ https://www.ncbi.nlm.nih.gov/pubmed/38005612 http://dx.doi.org/10.3390/s23229225 |
Ejemplares similares
-
LLM Adaptive PID Control for B5G Truck Platooning Systems
por: de Zarzà, I., et al.
Publicado: (2023) -
Evaluating the effectiveness of machine learning techniques in forecasting the severity of traffic accidents
por: Obasi, Izuchukwu Chukwuma, et al.
Publicado: (2023) -
Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents
por: Barba, Lida, et al.
Publicado: (2014) -
Five-Year Forecasting Deaths Caused by Traffic Accidents in Fars Province of Iran
por: Yadollahi, Mahnaz, et al.
Publicado: (2019) -
A Time Series Model for Assessing the Trend and Forecasting the Road Traffic Accident Mortality
por: Yousefzadeh-Chabok, Shahrokh, et al.
Publicado: (2016)