Cargando…
Pseudovirus Nanoparticles Displaying Plasmodium Circumsporozoite Proteins Elicited High Titers of Sporozoite-Binding Antibody
Background: malaria caused by Plasmodium parasites remains a public health threat. The circumsporozoite proteins (CSPs) of Plasmodium sporozoite play a key role in Plasmodium infection, serving as an excellent vaccine target. Methods: using a self-assembled S(60) nanoparticle platform, we generated...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674615/ https://www.ncbi.nlm.nih.gov/pubmed/38005982 http://dx.doi.org/10.3390/vaccines11111650 |
Sumario: | Background: malaria caused by Plasmodium parasites remains a public health threat. The circumsporozoite proteins (CSPs) of Plasmodium sporozoite play a key role in Plasmodium infection, serving as an excellent vaccine target. Methods: using a self-assembled S(60) nanoparticle platform, we generated pseudovirus nanoparticles (PVNPs) displaying CSPs, named S-CSPs, for enhanced immunogenicity. Results: purified Hisx6-tagged or tag-free S-CSPs self-assembled into PVNPs that consist of a norovirus S(60) inner shell and multiple surface-displayed CSPs. The majority of the PVNPs measured ~27 nm with some size variations, and their three-dimensional structure was modeled. The PVNP-displayed CSPs retained their glycan receptor-binding function. A mouse immunization study showed that PVNPs induced a high antibody response against CSP antigens and the PVNP-immunized mouse sera stained the CSPs of Plasmodium sporozoites at high titer. Conclusions and discussion: the PVNP-displayed CSPs retain their authentic antigenic feature and receptor-binding function. The CSP-specific antibody elicited by the S-CSP PVNPs binds original CSPs and potentially inhibits the attachment of Plasmodium sporozoites to their host cells, a key step for liver invasion by the sporozoites. Thus, S-CSP PVNPs may be an excellent vaccine candidate against malaria caused by Plasmodium parasites. |
---|