Cargando…
The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.)
Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil–plant system. We aimed to determine...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674648/ https://www.ncbi.nlm.nih.gov/pubmed/37999581 http://dx.doi.org/10.3390/toxics11110929 |
_version_ | 1785149733649514496 |
---|---|
author | Jensen, Hayley Lehto, Niklas Almond, Peter Gaw, Sally Robinson, Brett |
author_facet | Jensen, Hayley Lehto, Niklas Almond, Peter Gaw, Sally Robinson, Brett |
author_sort | Jensen, Hayley |
collection | PubMed |
description | Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil–plant system. We aimed to determine the capacity of Lolium perenne (a common pasture species) to tolerate and accumulate the RTEs Be, Ga, In, La, Ce, Nd, and Gd in a fluvial recent soil. Cadmium was used as a reference as a well-studied contaminant that is relatively mobile in the soil–plant system. Soil was spiked with 2.5–283 mg kg(−1) of RTE or Cd salts, representing five, 10, 20, and 40 times their background concentrations in soil. For Be, Ce, In, and La, there was no growth reduction, even at the highest soil concentrations (76, 1132, 10.2, and 874 mg kg(−1), respectively), which resulted in foliar concentrations of 7.1, 12, 0.11, and 50 mg kg(−1), respectively. The maximum no-biomass reduction foliar concentrations for Cd, Gd, Nd, and Ga were 0.061, 0.1, 7.1, and 11 mg kg(−1), respectively. Bioaccumulation coefficients ranged from 0.0030–0.95, and increased Ce < In < Nd ≅ Gd < La ≅ Be ≅ Ga < Cd. Beryllium and La were the RTEs most at risk of entering the food chain via L. perenne, as their toxicity thresholds were not reached in the ranges tested, and the bioaccumulation coefficient (plant/soil concentration quotient) trends indicated that uptake would continue to increase at higher soil concentrations. In contrast, In and Ce were the elements least likely to enter the food chain. Further research should repeat the experiments in different soil types or with different plant species to test the robustness of the findings. |
format | Online Article Text |
id | pubmed-10674648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106746482023-11-15 The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.) Jensen, Hayley Lehto, Niklas Almond, Peter Gaw, Sally Robinson, Brett Toxics Article Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil–plant system. We aimed to determine the capacity of Lolium perenne (a common pasture species) to tolerate and accumulate the RTEs Be, Ga, In, La, Ce, Nd, and Gd in a fluvial recent soil. Cadmium was used as a reference as a well-studied contaminant that is relatively mobile in the soil–plant system. Soil was spiked with 2.5–283 mg kg(−1) of RTE or Cd salts, representing five, 10, 20, and 40 times their background concentrations in soil. For Be, Ce, In, and La, there was no growth reduction, even at the highest soil concentrations (76, 1132, 10.2, and 874 mg kg(−1), respectively), which resulted in foliar concentrations of 7.1, 12, 0.11, and 50 mg kg(−1), respectively. The maximum no-biomass reduction foliar concentrations for Cd, Gd, Nd, and Ga were 0.061, 0.1, 7.1, and 11 mg kg(−1), respectively. Bioaccumulation coefficients ranged from 0.0030–0.95, and increased Ce < In < Nd ≅ Gd < La ≅ Be ≅ Ga < Cd. Beryllium and La were the RTEs most at risk of entering the food chain via L. perenne, as their toxicity thresholds were not reached in the ranges tested, and the bioaccumulation coefficient (plant/soil concentration quotient) trends indicated that uptake would continue to increase at higher soil concentrations. In contrast, In and Ce were the elements least likely to enter the food chain. Further research should repeat the experiments in different soil types or with different plant species to test the robustness of the findings. MDPI 2023-11-15 /pmc/articles/PMC10674648/ /pubmed/37999581 http://dx.doi.org/10.3390/toxics11110929 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jensen, Hayley Lehto, Niklas Almond, Peter Gaw, Sally Robinson, Brett The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.) |
title | The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.) |
title_full | The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.) |
title_fullStr | The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.) |
title_full_unstemmed | The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.) |
title_short | The Uptake of Rare Trace Elements by Perennial Ryegrass (Lolium perenne L.) |
title_sort | uptake of rare trace elements by perennial ryegrass (lolium perenne l.) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674648/ https://www.ncbi.nlm.nih.gov/pubmed/37999581 http://dx.doi.org/10.3390/toxics11110929 |
work_keys_str_mv | AT jensenhayley theuptakeofraretraceelementsbyperennialryegrassloliumperennel AT lehtoniklas theuptakeofraretraceelementsbyperennialryegrassloliumperennel AT almondpeter theuptakeofraretraceelementsbyperennialryegrassloliumperennel AT gawsally theuptakeofraretraceelementsbyperennialryegrassloliumperennel AT robinsonbrett theuptakeofraretraceelementsbyperennialryegrassloliumperennel AT jensenhayley uptakeofraretraceelementsbyperennialryegrassloliumperennel AT lehtoniklas uptakeofraretraceelementsbyperennialryegrassloliumperennel AT almondpeter uptakeofraretraceelementsbyperennialryegrassloliumperennel AT gawsally uptakeofraretraceelementsbyperennialryegrassloliumperennel AT robinsonbrett uptakeofraretraceelementsbyperennialryegrassloliumperennel |