Cargando…

Poly (ε-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests

Tissue engineering is vital in treating injuries and restoring damaged tissues, aiming to accelerate regeneration and optimize the complex healing process. In this study, multizonal scaffolds, designed to mimic tissues with bilayer architecture, were prepared using the rotary jet spinning technique...

Descripción completa

Detalles Bibliográficos
Autores principales: Lima, Tainara de Paula de Lima, Canelas, Caio Augusto de Almeida, Dutra, Joyce da Cruz Ferraz, Rodrigues, Ana Paula Drummond, Brígida, Rebecca Thereza Silva Santa, Concha, Viktor Oswaldo Cárdenas, da Costa, Fernando Augusto Miranda, Passos, Marcele Fonseca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674666/
https://www.ncbi.nlm.nih.gov/pubmed/38006127
http://dx.doi.org/10.3390/polym15224403
Descripción
Sumario:Tissue engineering is vital in treating injuries and restoring damaged tissues, aiming to accelerate regeneration and optimize the complex healing process. In this study, multizonal scaffolds, designed to mimic tissues with bilayer architecture, were prepared using the rotary jet spinning technique (RJS scaffolds). Polycaprolactone and different concentrations of alginate hydrogel (2, 4, and 6% m/v) were used. The materials were swollen in pracaxi vegetable oil (PO) (Pentaclethra macroloba) and evaluated in terms of surface morphology, wettability, functional groups, thermal behavior, crystallinity, and cytotoxicity. X-ray diffraction (XRD) showed the disappearance of the diffraction peak 2θ = 31.5° for samples from the polycaprolactone/pracaxi/alginate (PCLOA) group, suggesting a reduction of crystallinity according to the presence of PO and semi-crystalline structure. Wettability gradients (0 to 80.91°) were observed according to the deposition layer and hydrogel content. Pore diameters varied between 9.27 μm and 37.57 μm. Molecular interactions with the constituents of the formulation were observed via infrared spectra with Fourier transform (FTIR), and their influence was detected in the reduction of the maximum degradation temperature within the groups of scaffolds (polycaprolactone/alginate (PCLA) and PCLOA) about the control. In vitro tests indicated reduced cell viability in the presence of alginate hydrogel and PO, respectively.