Cargando…
Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production
The production of long-term landslide maps (LAM) holds crucial importance in estimating landslide activity, vegetation disturbance, and regional stability. However, the availability of LAMs remains limited in many regions, despite the application of various machine-learning methods, deep-learning (D...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674776/ https://www.ncbi.nlm.nih.gov/pubmed/38005429 http://dx.doi.org/10.3390/s23229041 |
_version_ | 1785140908197412864 |
---|---|
author | Hu, Zekun Yi, Bangjin Li, Hui Zhong, Cheng Gao, Peng Chen, Jiaoqi Yao, Qianxiang Guo, Haojia |
author_facet | Hu, Zekun Yi, Bangjin Li, Hui Zhong, Cheng Gao, Peng Chen, Jiaoqi Yao, Qianxiang Guo, Haojia |
author_sort | Hu, Zekun |
collection | PubMed |
description | The production of long-term landslide maps (LAM) holds crucial importance in estimating landslide activity, vegetation disturbance, and regional stability. However, the availability of LAMs remains limited in many regions, despite the application of various machine-learning methods, deep-learning (DL) models, and ensemble strategies in landslide detection. While transfer learning is considered an effective approach to tackle this challenge, there has been limited exploration and comparison of the temporal transferability of state-of-the-art deep-learning models in the context of LAM production, leaving a significant gap in the research. In this study, an extensive series of tests was conducted to evaluate the temporal transferability of typical semantic segmentation models, specifically U-Net, U-Net 3+, and TransU-Net, using a 10-year landslide-inventory dataset located near the epicenter of the Wenchuan earthquake. The experiment results disclose the feasibility and limitations of implementing transfer-learning methods for LAM production, particularly when leveraging the power of U-Net 3+. Furthermore, following an assessment of the effects of varying data volumes, patch sizes, and time intervals, this study recommends appropriate settings for LAM production, emphasizing the balance between efficiency and production performance. The findings from this study can serve as a valuable reference for devising an efficient and reliable strategy for large-scale LAM production in landslide-prone regions. |
format | Online Article Text |
id | pubmed-10674776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106747762023-11-08 Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production Hu, Zekun Yi, Bangjin Li, Hui Zhong, Cheng Gao, Peng Chen, Jiaoqi Yao, Qianxiang Guo, Haojia Sensors (Basel) Article The production of long-term landslide maps (LAM) holds crucial importance in estimating landslide activity, vegetation disturbance, and regional stability. However, the availability of LAMs remains limited in many regions, despite the application of various machine-learning methods, deep-learning (DL) models, and ensemble strategies in landslide detection. While transfer learning is considered an effective approach to tackle this challenge, there has been limited exploration and comparison of the temporal transferability of state-of-the-art deep-learning models in the context of LAM production, leaving a significant gap in the research. In this study, an extensive series of tests was conducted to evaluate the temporal transferability of typical semantic segmentation models, specifically U-Net, U-Net 3+, and TransU-Net, using a 10-year landslide-inventory dataset located near the epicenter of the Wenchuan earthquake. The experiment results disclose the feasibility and limitations of implementing transfer-learning methods for LAM production, particularly when leveraging the power of U-Net 3+. Furthermore, following an assessment of the effects of varying data volumes, patch sizes, and time intervals, this study recommends appropriate settings for LAM production, emphasizing the balance between efficiency and production performance. The findings from this study can serve as a valuable reference for devising an efficient and reliable strategy for large-scale LAM production in landslide-prone regions. MDPI 2023-11-08 /pmc/articles/PMC10674776/ /pubmed/38005429 http://dx.doi.org/10.3390/s23229041 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Zekun Yi, Bangjin Li, Hui Zhong, Cheng Gao, Peng Chen, Jiaoqi Yao, Qianxiang Guo, Haojia Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production |
title | Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production |
title_full | Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production |
title_fullStr | Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production |
title_full_unstemmed | Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production |
title_short | Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production |
title_sort | comparative evaluation of state-of-the-art semantic segmentation networks for long-term landslide map production |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674776/ https://www.ncbi.nlm.nih.gov/pubmed/38005429 http://dx.doi.org/10.3390/s23229041 |
work_keys_str_mv | AT huzekun comparativeevaluationofstateoftheartsemanticsegmentationnetworksforlongtermlandslidemapproduction AT yibangjin comparativeevaluationofstateoftheartsemanticsegmentationnetworksforlongtermlandslidemapproduction AT lihui comparativeevaluationofstateoftheartsemanticsegmentationnetworksforlongtermlandslidemapproduction AT zhongcheng comparativeevaluationofstateoftheartsemanticsegmentationnetworksforlongtermlandslidemapproduction AT gaopeng comparativeevaluationofstateoftheartsemanticsegmentationnetworksforlongtermlandslidemapproduction AT chenjiaoqi comparativeevaluationofstateoftheartsemanticsegmentationnetworksforlongtermlandslidemapproduction AT yaoqianxiang comparativeevaluationofstateoftheartsemanticsegmentationnetworksforlongtermlandslidemapproduction AT guohaojia comparativeevaluationofstateoftheartsemanticsegmentationnetworksforlongtermlandslidemapproduction |