Cargando…
Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets
Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674809/ https://www.ncbi.nlm.nih.gov/pubmed/38005921 http://dx.doi.org/10.3390/v15112245 |
_version_ | 1785140915893960704 |
---|---|
author | Paremskaia, Anastasiia Iu. Rudik, Anastassia V. Filimonov, Dmitry A. Lagunin, Alexey A. Poroikov, Vladimir V. Tarasova, Olga A. |
author_facet | Paremskaia, Anastasiia Iu. Rudik, Anastassia V. Filimonov, Dmitry A. Lagunin, Alexey A. Poroikov, Vladimir V. Tarasova, Olga A. |
author_sort | Paremskaia, Anastasiia Iu. |
collection | PubMed |
description | Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1). We propose two machine learning methods and the appropriate models for predicting HIV drug resistance related to amino acid substitutions in HIV targets: (i) k-mers utilizing the random forest and the support vector machine algorithms of the scikit-learn library, and (ii) multi-n-grams using the Bayesian approach implemented in MultiPASSR software. Both multi-n-grams and k-mers were computed based on the amino acid sequences of HIV enzymes: reverse transcriptase and protease. The performance of the models was estimated by five-fold cross-validation. The resulting classification models have a relatively high reliability (minimum accuracy for the drugs is 0.82, maximum: 0.94) and were used to create a web application, HVR (HIV drug Resistance), for the prediction of HIV drug resistance to protease inhibitors and nucleoside and non-nucleoside reverse transcriptase inhibitors based on the analysis of the amino acid sequences of the appropriate HIV proteins from clinical samples. |
format | Online Article Text |
id | pubmed-10674809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106748092023-11-11 Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets Paremskaia, Anastasiia Iu. Rudik, Anastassia V. Filimonov, Dmitry A. Lagunin, Alexey A. Poroikov, Vladimir V. Tarasova, Olga A. Viruses Article Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1). We propose two machine learning methods and the appropriate models for predicting HIV drug resistance related to amino acid substitutions in HIV targets: (i) k-mers utilizing the random forest and the support vector machine algorithms of the scikit-learn library, and (ii) multi-n-grams using the Bayesian approach implemented in MultiPASSR software. Both multi-n-grams and k-mers were computed based on the amino acid sequences of HIV enzymes: reverse transcriptase and protease. The performance of the models was estimated by five-fold cross-validation. The resulting classification models have a relatively high reliability (minimum accuracy for the drugs is 0.82, maximum: 0.94) and were used to create a web application, HVR (HIV drug Resistance), for the prediction of HIV drug resistance to protease inhibitors and nucleoside and non-nucleoside reverse transcriptase inhibitors based on the analysis of the amino acid sequences of the appropriate HIV proteins from clinical samples. MDPI 2023-11-11 /pmc/articles/PMC10674809/ /pubmed/38005921 http://dx.doi.org/10.3390/v15112245 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Paremskaia, Anastasiia Iu. Rudik, Anastassia V. Filimonov, Dmitry A. Lagunin, Alexey A. Poroikov, Vladimir V. Tarasova, Olga A. Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets |
title | Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets |
title_full | Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets |
title_fullStr | Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets |
title_full_unstemmed | Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets |
title_short | Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets |
title_sort | web service for hiv drug resistance prediction based on analysis of amino acid substitutions in main drug targets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674809/ https://www.ncbi.nlm.nih.gov/pubmed/38005921 http://dx.doi.org/10.3390/v15112245 |
work_keys_str_mv | AT paremskaiaanastasiiaiu webserviceforhivdrugresistancepredictionbasedonanalysisofaminoacidsubstitutionsinmaindrugtargets AT rudikanastassiav webserviceforhivdrugresistancepredictionbasedonanalysisofaminoacidsubstitutionsinmaindrugtargets AT filimonovdmitrya webserviceforhivdrugresistancepredictionbasedonanalysisofaminoacidsubstitutionsinmaindrugtargets AT laguninalexeya webserviceforhivdrugresistancepredictionbasedonanalysisofaminoacidsubstitutionsinmaindrugtargets AT poroikovvladimirv webserviceforhivdrugresistancepredictionbasedonanalysisofaminoacidsubstitutionsinmaindrugtargets AT tarasovaolgaa webserviceforhivdrugresistancepredictionbasedonanalysisofaminoacidsubstitutionsinmaindrugtargets |