Cargando…
Properties and Applications of Self-Healing Polymeric Materials: A Review
Self-healing polymeric materials, engineered to autonomously self-restore damages from external stimuli, are at the forefront of sustainable materials research. Their ability to maintain product quality and functionality and prolong product life plays a crucial role in mitigating the environmental b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674826/ https://www.ncbi.nlm.nih.gov/pubmed/38006132 http://dx.doi.org/10.3390/polym15224408 |
Sumario: | Self-healing polymeric materials, engineered to autonomously self-restore damages from external stimuli, are at the forefront of sustainable materials research. Their ability to maintain product quality and functionality and prolong product life plays a crucial role in mitigating the environmental burden of plastic waste. Historically, initial research on the development of self-healing materials has focused on extrinsic self-healing systems characterized by the integration of embedded healing agents. These studies have primarily focused on optimizing the release of healing agents and ensuring rapid self-healing capabilities. In contrast, recent advancements have shifted the focus towards intrinsic self-healing systems that utilize their inherent reactivity and interactions within the matrix. These systems offer the advantage of repeated self-healing over the same damaged zone, which is attributed to reversible chemical reactions and supramolecular interactions. This review offers a comprehensive perspective on extrinsic and intrinsic self-healing approaches and elucidates their unique properties and characteristics. Furthermore, various self-healing mechanisms are surveyed, and insights from cutting-edge studies are integrated. |
---|