Cargando…
Detection of Broken Rotor Bars in Cage Induction Motors Using Machine Learning Methods
In this paper, the performance of machine learning methods for squirrel cage induction motor broken rotor bar (BRB) fault detection is evaluated. Decision tree classification (DTC), artificial neural network (ANN), and deep learning (DL) methods are developed, applied, and studied to compare their p...
Autores principales: | Chisedzi, Lloyd Prosper, Muteba, Mbika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674855/ https://www.ncbi.nlm.nih.gov/pubmed/38005467 http://dx.doi.org/10.3390/s23229079 |
Ejemplares similares
-
Treatment Strategy Research on a Squirrel-Cage Induction Motor with Broken Rotor Bar Faults
por: Wu, Yucai, et al.
Publicado: (2022) -
Broken Rotor Bar Detection in Induction Motors through Contrast Estimation
por: Ferrucho-Alvarez, Edna Rocio, et al.
Publicado: (2021) -
An experimental method for diagnostic of incipient broken rotor bar fault in induction machines
por: Sabir, Hamza, et al.
Publicado: (2022) -
Quantitative Analysis of Broken Rotor Bars in Cage Motor Based on Energy Characteristics of Vibration Signals
por: Shi, Jie, et al.
Publicado: (2022) -
The diagnostics of induction motor broken rotor bars on the basis of the electromotive force analysis
por: Romashykhina, Zhanna Iv, et al.
Publicado: (2017)