Cargando…

Analysis of the Physical Characteristics of an Anhydrous Vehicle for Compounded Pediatric Oral Liquids

The paucity of suitable drug formulations for pediatric patients generates a need for customized, compounded medications. This research study was set out to comprehensively analyze the physical properties of the new, proprietary anhydrous oral vehicle SuspendIt(®) Anhydrous, which was designed for c...

Descripción completa

Detalles Bibliográficos
Autores principales: Banov, Daniel, Liu, Yi, Ip, Kendice, Shan, Ashley, Vu, Christine, Zdoryk, Oleksandr, Bassani, August S., Carvalho, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674891/
https://www.ncbi.nlm.nih.gov/pubmed/38004620
http://dx.doi.org/10.3390/pharmaceutics15112642
Descripción
Sumario:The paucity of suitable drug formulations for pediatric patients generates a need for customized, compounded medications. This research study was set out to comprehensively analyze the physical properties of the new, proprietary anhydrous oral vehicle SuspendIt(®) Anhydrous, which was designed for compounding pediatric oral liquids. A wide range of tests was used, including sedimentation volume, viscosity, droplet size after dispersion in simulated gastric fluid, microscopic examination and content uniformity measurements to evaluate the properties of the anhydrous vehicle. The results showed that the vehicle exhibited consistent physical properties under varying conditions and maintained stability over time. This can be attributed to the unique blend of excipients in its formulation, which not only maintain its viscosity but also confer thixotropic behavior. The unique combination of viscous, thixotropic and self-emulsifying properties allows for rapid redispersibility, sedimentation stability, accurate dosing, potential drug solubility, dispersion and promotion of enhanced gastrointestinal distribution and absorption. Furthermore, the vehicle demonstrated long-term sedimentation stability and content uniformity for a list of 13 anhydrous suspensions. These results suggest that the anhydrous oral vehicle could serve as a versatile base for pediatric formulation, potentially filling an important gap in pediatric drug delivery. Future studies can further investigate its compatibility, stability and performance with other drugs and in different clinical scenarios.