Cargando…

Naphthoquinones as a Promising Class of Compounds for Facing the Challenge of Parkinson’s Disease

Parkinson’s disease (PD) is a degenerative disease that affects approximately 6.1 million people and is primarily caused by the loss of dopaminergic neurons. Naphthoquinones have several biological activities explored in the literature, including neuroprotective effects. Therefore, this review shows...

Descripción completa

Detalles Bibliográficos
Autores principales: Santos, Thaís Barreto, de Moraes, Leonardo Gomes Cavalieri, Pacheco, Paulo Anastácio Furtado, dos Santos, Douglas Galdino, Ribeiro, Rafaella Machado de Assis Cabral, Moreira, Caroline dos Santos, da Rocha, David Rodrigues
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674926/
https://www.ncbi.nlm.nih.gov/pubmed/38004442
http://dx.doi.org/10.3390/ph16111577
Descripción
Sumario:Parkinson’s disease (PD) is a degenerative disease that affects approximately 6.1 million people and is primarily caused by the loss of dopaminergic neurons. Naphthoquinones have several biological activities explored in the literature, including neuroprotective effects. Therefore, this review shows an overview of naphthoquinones with neuroprotective effects, such as shikonin, plumbagin and vitamin K, that prevented oxidative stress, in addition to multiple mechanisms. Synthetic naphthoquinones with inhibitory activity on the P2X7 receptor were also found, leading to a neuroprotective effect on Neuro-2a cells. It was found that naphthazarin can act as inhibitors of the MAO-B enzyme. Vitamin K and synthetic naphthoquinones hybrids with tryptophan or dopamine showed inhibition of the aggregation of α-synuclein. Synthetic derivatives of juglone and naphthazarin were able to protect Neuro-2a cells against neurodegenerative effects of neurotoxins. In addition, routes for producing synthetic derivatives were also discussed. With the data presented, 1,4-naphthoquinones can be considered as a promising class in the treatment of PD and this review aims to assist the scientific community in the application of these compounds. The derivatives presented can also support further research that explores their structures as synthetic platforms, in addition to helping to understand the interaction of naphthoquinones with biological targets related to PD.