Cargando…
Illuminating the Neural Landscape of Pilot Mental States: A Convolutional Neural Network Approach with Shapley Additive Explanations Interpretability
Predicting pilots’ mental states is a critical challenge in aviation safety and performance, with electroencephalogram data offering a promising avenue for detection. However, the interpretability of machine learning and deep learning models, which are often used for such tasks, remains a significan...
Autores principales: | Alreshidi, Ibrahim, Bisandu, Desmond, Moulitsas, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674947/ https://www.ncbi.nlm.nih.gov/pubmed/38005440 http://dx.doi.org/10.3390/s23229052 |
Ejemplares similares
-
An artificial neural network−pharmacokinetic model and its interpretation using Shapley additive explanations
por: Ogami, Chika, et al.
Publicado: (2021) -
Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values
por: Karim, Abdul, et al.
Publicado: (2021) -
Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification
por: Bifarin, Olatomiwa O.
Publicado: (2023) -
Multimodal Approach for Pilot Mental State Detection Based on EEG
por: Alreshidi, Ibrahim, et al.
Publicado: (2023) -
EdgeSHAPer: Bond-centric Shapley value-based explanation method for graph neural networks
por: Mastropietro, Andrea, et al.
Publicado: (2022)