Cargando…

Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry

Structural fiber-reinforced polymer (FRP) composite materials consisting of a polymer matrix reinforced with layers of high-strength fibers are used in numerous applications, including but not limited to spacecraft, vehicles, buildings, and bridges. Researchers in the past few decades have suggested...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaradat, Mohammed, Duran, Jorge Loredo, Murcia, Daniel Heras, Buechley, Leah, Shen, Yu-Lin, Christodoulou, Christos, Taha, Mahmoud Reda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674995/
https://www.ncbi.nlm.nih.gov/pubmed/38006125
http://dx.doi.org/10.3390/polym15224401
_version_ 1785149770038247424
author Jaradat, Mohammed
Duran, Jorge Loredo
Murcia, Daniel Heras
Buechley, Leah
Shen, Yu-Lin
Christodoulou, Christos
Taha, Mahmoud Reda
author_facet Jaradat, Mohammed
Duran, Jorge Loredo
Murcia, Daniel Heras
Buechley, Leah
Shen, Yu-Lin
Christodoulou, Christos
Taha, Mahmoud Reda
author_sort Jaradat, Mohammed
collection PubMed
description Structural fiber-reinforced polymer (FRP) composite materials consisting of a polymer matrix reinforced with layers of high-strength fibers are used in numerous applications, including but not limited to spacecraft, vehicles, buildings, and bridges. Researchers in the past few decades have suggested the necessary integration of sensors (e.g., fiber optic sensors) in polymer composites to enable health monitoring of composites’ performance over their service lives. This work introduces an innovative cognizant composite that can self-sense, compute, and implement decisions based on sensed values. It is a critical step towards smart, resilient infrastructure. We describe a method to fabricate textile sensors with flexible circuitry and a microcontroller within the polymer composite, enabling computational operations to take place in the composite without impacting its integrity. A microstructural investigation of the sensors showed that the amount of oxidative agent and soaking time of the fabric play a major role in the adsorption of polypyrrole (PPy) on fiberglass (FG). XPS results showed that the 10 g ferric chloride solution with 6 h of soaking time had the highest degree of protonation (28%) and, therefore, higher adsorption of PPy on FG. A strain range of 30% was achieved by examining different circuitry and sensor designs for their resistance and strain resolution under mechanical loading. A microcontroller was added to the circuit and then embedded within a composite material. This composite system was tested under flexural loading to demonstrate its self-sensing, computing, and actuation capabilities. The resulting cognizant composite demonstrated the ability to read resistance values and measure strain using the embedded microcontroller and autonomously actuate an LED light when the strain exceeds a predefined limit of 2000 µε. The application of the proposed FRP system would provide in situ monitoring of structural composite components with autonomous response capabilities, as well as reduce manufacturing, production, and maintenance costs.
format Online
Article
Text
id pubmed-10674995
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106749952023-11-14 Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry Jaradat, Mohammed Duran, Jorge Loredo Murcia, Daniel Heras Buechley, Leah Shen, Yu-Lin Christodoulou, Christos Taha, Mahmoud Reda Polymers (Basel) Article Structural fiber-reinforced polymer (FRP) composite materials consisting of a polymer matrix reinforced with layers of high-strength fibers are used in numerous applications, including but not limited to spacecraft, vehicles, buildings, and bridges. Researchers in the past few decades have suggested the necessary integration of sensors (e.g., fiber optic sensors) in polymer composites to enable health monitoring of composites’ performance over their service lives. This work introduces an innovative cognizant composite that can self-sense, compute, and implement decisions based on sensed values. It is a critical step towards smart, resilient infrastructure. We describe a method to fabricate textile sensors with flexible circuitry and a microcontroller within the polymer composite, enabling computational operations to take place in the composite without impacting its integrity. A microstructural investigation of the sensors showed that the amount of oxidative agent and soaking time of the fabric play a major role in the adsorption of polypyrrole (PPy) on fiberglass (FG). XPS results showed that the 10 g ferric chloride solution with 6 h of soaking time had the highest degree of protonation (28%) and, therefore, higher adsorption of PPy on FG. A strain range of 30% was achieved by examining different circuitry and sensor designs for their resistance and strain resolution under mechanical loading. A microcontroller was added to the circuit and then embedded within a composite material. This composite system was tested under flexural loading to demonstrate its self-sensing, computing, and actuation capabilities. The resulting cognizant composite demonstrated the ability to read resistance values and measure strain using the embedded microcontroller and autonomously actuate an LED light when the strain exceeds a predefined limit of 2000 µε. The application of the proposed FRP system would provide in situ monitoring of structural composite components with autonomous response capabilities, as well as reduce manufacturing, production, and maintenance costs. MDPI 2023-11-14 /pmc/articles/PMC10674995/ /pubmed/38006125 http://dx.doi.org/10.3390/polym15224401 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jaradat, Mohammed
Duran, Jorge Loredo
Murcia, Daniel Heras
Buechley, Leah
Shen, Yu-Lin
Christodoulou, Christos
Taha, Mahmoud Reda
Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry
title Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry
title_full Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry
title_fullStr Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry
title_full_unstemmed Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry
title_short Cognizant Fiber-Reinforced Polymer Composites Incorporating Seamlessly Integrated Sensing and Computing Circuitry
title_sort cognizant fiber-reinforced polymer composites incorporating seamlessly integrated sensing and computing circuitry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674995/
https://www.ncbi.nlm.nih.gov/pubmed/38006125
http://dx.doi.org/10.3390/polym15224401
work_keys_str_mv AT jaradatmohammed cognizantfiberreinforcedpolymercompositesincorporatingseamlesslyintegratedsensingandcomputingcircuitry
AT duranjorgeloredo cognizantfiberreinforcedpolymercompositesincorporatingseamlesslyintegratedsensingandcomputingcircuitry
AT murciadanielheras cognizantfiberreinforcedpolymercompositesincorporatingseamlesslyintegratedsensingandcomputingcircuitry
AT buechleyleah cognizantfiberreinforcedpolymercompositesincorporatingseamlesslyintegratedsensingandcomputingcircuitry
AT shenyulin cognizantfiberreinforcedpolymercompositesincorporatingseamlesslyintegratedsensingandcomputingcircuitry
AT christodoulouchristos cognizantfiberreinforcedpolymercompositesincorporatingseamlesslyintegratedsensingandcomputingcircuitry
AT tahamahmoudreda cognizantfiberreinforcedpolymercompositesincorporatingseamlesslyintegratedsensingandcomputingcircuitry