Cargando…
A Lightweight Visual Simultaneous Localization and Mapping Method with a High Precision in Dynamic Scenes
Currently, in most traditional VSLAM (visual SLAM) systems, static assumptions result in a low accuracy in dynamic environments, or result in a new and higher level of accuracy but at the cost of sacrificing the real–time property. In highly dynamic scenes, balancing a high accuracy and a low comput...
Autores principales: | Zhang, Qi, Yu, Wentao, Liu, Weirong, Xu, Hao, He, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675022/ https://www.ncbi.nlm.nih.gov/pubmed/38005660 http://dx.doi.org/10.3390/s23229274 |
Ejemplares similares
-
Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes
por: Zhang, Xiao Ya, et al.
Publicado: (2023) -
Lightweight Scene Text Recognition Based on Transformer
por: Luan, Xin, et al.
Publicado: (2023) -
A survey: which features are required for dynamic visual simultaneous localization and mapping?
por: Xu, Zewen, et al.
Publicado: (2021) -
A New Method for Classifying Scenes for Simultaneous Localization and Mapping Using the Boundary Object Function Descriptor on RGB-D Points
por: Lomas-Barrie, Victor, et al.
Publicado: (2023) -
Timing Precision in Population Coding of Natural Scenes in the Early Visual System
por: Desbordes, Gaëlle, et al.
Publicado: (2008)