Cargando…
A Pipeline Defect Instance Segmentation System Based on SparseInst
Deep learning algorithms have achieved encouraging results for pipeline defect segmentation. However, existing defect segmentation methods may encounter challenges in accurately segmenting the complex features of pipeline defects and suffer from low processing speeds. Therefore, in this study, we pr...
Autores principales: | Wang, Niannian, Zhang, Jingzheng, Song, Xiaotian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675068/ https://www.ncbi.nlm.nih.gov/pubmed/38005407 http://dx.doi.org/10.3390/s23229019 |
Ejemplares similares
-
SheepInst: A High-Performance Instance Segmentation of Sheep Images Based on Deep Learning
por: Zhao, Hongke, et al.
Publicado: (2023) -
CompleteInst: An Efficient Instance Segmentation Network for Missed Detection Scene of Autonomous Driving
por: Wang, Hai, et al.
Publicado: (2023) -
ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention
por: Zhang, Qian, et al.
Publicado: (2023) -
Automatic Image Generation Pipeline for Instance Segmentation of Deformable Linear Objects
por: Dirr, Jonas, et al.
Publicado: (2023) -
Clinical Bureau of Am. Inst. of Homœopathy
por: Pomeroy, T. F.
Publicado: (1882)