Cargando…

Evaluation of a Three-Fluid Nozzle Spraying Process for Facilitating Spray Drying of Hydrophilic Polymers for the Creation of Amorphous Solid Dispersions

Amorphous solid dispersions (ASDs) enable formulations to improve the solubility of poorly soluble active pharmaceutical ingredients (APIs). The amorphous state is reached through the disruption of the crystalline lattice of an API resulting in an increased apparent solubility with faster disintegra...

Descripción completa

Detalles Bibliográficos
Autores principales: Mueller, Lena Karin, Halstenberg, Laura, Di Gallo, Nicole, Kipping, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675266/
https://www.ncbi.nlm.nih.gov/pubmed/38004521
http://dx.doi.org/10.3390/pharmaceutics15112542
_version_ 1785141023951814656
author Mueller, Lena Karin
Halstenberg, Laura
Di Gallo, Nicole
Kipping, Thomas
author_facet Mueller, Lena Karin
Halstenberg, Laura
Di Gallo, Nicole
Kipping, Thomas
author_sort Mueller, Lena Karin
collection PubMed
description Amorphous solid dispersions (ASDs) enable formulations to improve the solubility of poorly soluble active pharmaceutical ingredients (APIs). The amorphous state is reached through the disruption of the crystalline lattice of an API resulting in an increased apparent solubility with faster disintegration. Nevertheless, this form is characterized by a high-energy state which is prone to re-crystallization. To ensure a stable ASD, excipients, e.g., polymers that form a matrix in which an API is dispersed, are used. The applicable polymer range is usually linked to their solubility in the respective solvent, therefore limiting the use of hydrophilic polymers. In this work, we show the applicability of the hydrophilic polymer, polyvinyl alcohol (PVA), in spray-dried solid dispersions. Using a three-fluid nozzle approach, this polymer can be used to generate ASDs with a targeted dissolution profile that is characterized by a prominent spring and desired parachute effect showing both supersaturation and crystallization inhibition. For this purpose, the polymer was tested in formulations containing the weakly basic drug, ketoconazole, and the acidic drug, indomethacin, both classified as Biopharmaceutics Classification System (BSC) class II drugs, as well as the weakly basic drug ritonavir classified as BCS IV. Furthermore, ritonavir was used to show the enhanced drug-loading capacity of PVA derived from the advantageous viscosity profile that makes the polymer an interesting candidate for spray drying applications.
format Online
Article
Text
id pubmed-10675266
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106752662023-10-27 Evaluation of a Three-Fluid Nozzle Spraying Process for Facilitating Spray Drying of Hydrophilic Polymers for the Creation of Amorphous Solid Dispersions Mueller, Lena Karin Halstenberg, Laura Di Gallo, Nicole Kipping, Thomas Pharmaceutics Article Amorphous solid dispersions (ASDs) enable formulations to improve the solubility of poorly soluble active pharmaceutical ingredients (APIs). The amorphous state is reached through the disruption of the crystalline lattice of an API resulting in an increased apparent solubility with faster disintegration. Nevertheless, this form is characterized by a high-energy state which is prone to re-crystallization. To ensure a stable ASD, excipients, e.g., polymers that form a matrix in which an API is dispersed, are used. The applicable polymer range is usually linked to their solubility in the respective solvent, therefore limiting the use of hydrophilic polymers. In this work, we show the applicability of the hydrophilic polymer, polyvinyl alcohol (PVA), in spray-dried solid dispersions. Using a three-fluid nozzle approach, this polymer can be used to generate ASDs with a targeted dissolution profile that is characterized by a prominent spring and desired parachute effect showing both supersaturation and crystallization inhibition. For this purpose, the polymer was tested in formulations containing the weakly basic drug, ketoconazole, and the acidic drug, indomethacin, both classified as Biopharmaceutics Classification System (BSC) class II drugs, as well as the weakly basic drug ritonavir classified as BCS IV. Furthermore, ritonavir was used to show the enhanced drug-loading capacity of PVA derived from the advantageous viscosity profile that makes the polymer an interesting candidate for spray drying applications. MDPI 2023-10-27 /pmc/articles/PMC10675266/ /pubmed/38004521 http://dx.doi.org/10.3390/pharmaceutics15112542 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mueller, Lena Karin
Halstenberg, Laura
Di Gallo, Nicole
Kipping, Thomas
Evaluation of a Three-Fluid Nozzle Spraying Process for Facilitating Spray Drying of Hydrophilic Polymers for the Creation of Amorphous Solid Dispersions
title Evaluation of a Three-Fluid Nozzle Spraying Process for Facilitating Spray Drying of Hydrophilic Polymers for the Creation of Amorphous Solid Dispersions
title_full Evaluation of a Three-Fluid Nozzle Spraying Process for Facilitating Spray Drying of Hydrophilic Polymers for the Creation of Amorphous Solid Dispersions
title_fullStr Evaluation of a Three-Fluid Nozzle Spraying Process for Facilitating Spray Drying of Hydrophilic Polymers for the Creation of Amorphous Solid Dispersions
title_full_unstemmed Evaluation of a Three-Fluid Nozzle Spraying Process for Facilitating Spray Drying of Hydrophilic Polymers for the Creation of Amorphous Solid Dispersions
title_short Evaluation of a Three-Fluid Nozzle Spraying Process for Facilitating Spray Drying of Hydrophilic Polymers for the Creation of Amorphous Solid Dispersions
title_sort evaluation of a three-fluid nozzle spraying process for facilitating spray drying of hydrophilic polymers for the creation of amorphous solid dispersions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675266/
https://www.ncbi.nlm.nih.gov/pubmed/38004521
http://dx.doi.org/10.3390/pharmaceutics15112542
work_keys_str_mv AT muellerlenakarin evaluationofathreefluidnozzlesprayingprocessforfacilitatingspraydryingofhydrophilicpolymersforthecreationofamorphoussoliddispersions
AT halstenberglaura evaluationofathreefluidnozzlesprayingprocessforfacilitatingspraydryingofhydrophilicpolymersforthecreationofamorphoussoliddispersions
AT digallonicole evaluationofathreefluidnozzlesprayingprocessforfacilitatingspraydryingofhydrophilicpolymersforthecreationofamorphoussoliddispersions
AT kippingthomas evaluationofathreefluidnozzlesprayingprocessforfacilitatingspraydryingofhydrophilicpolymersforthecreationofamorphoussoliddispersions