Cargando…
Supervised Multi-Layer Conditional Variational Auto-Encoder for Process Modeling and Soft Sensor
Variational auto-encoders (VAE) have been widely used in process modeling due to the ability of deep feature extraction and noise robustness. However, the construction of a supervised VAE model still faces huge challenges. The data generated by the existing supervised VAE models are unstable and unc...
Autores principales: | Tang, Xiaochu, Yan, Jiawei, Li, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675267/ https://www.ncbi.nlm.nih.gov/pubmed/38005559 http://dx.doi.org/10.3390/s23229175 |
Ejemplares similares
-
Self-Supervised Variational Auto-Encoders
por: Gatopoulos, Ioannis, et al.
Publicado: (2021) -
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition
por: Thapa, Keshav, et al.
Publicado: (2023) -
Genomic data imputation with variational auto-encoders
por: Qiu, Yeping Lina, et al.
Publicado: (2020) -
Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design
por: Mak, Hugo Wai Leung, et al.
Publicado: (2023)