Cargando…
Research and Implementation of Millet Ear Detection Method Based on Lightweight YOLOv5
As the millet ears are dense, small in size, and serious occlusion in the complex grain field scene, the target detection model suitable for this environment requires high computing power, and it is difficult to deploy the real-time detection of millet ears on mobile devices. A lightweight real-time...
Autores principales: | Qiu, Shujin, Li, Yun, Gao, Jian, Li, Xiaobin, Yuan, Xiangyang, Liu, Zhenyu, Cui, Qingliang, Wu, Cuiqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675272/ https://www.ncbi.nlm.nih.gov/pubmed/38005575 http://dx.doi.org/10.3390/s23229189 |
Ejemplares similares
-
Foxtail Millet Ear Detection Method Based on Attention Mechanism and Improved YOLOv5
por: Qiu, Shujin, et al.
Publicado: (2022) -
An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
por: Li, Chang, et al.
Publicado: (2023) -
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
por: Lv, Haohui, et al.
Publicado: (2022) -
Research on Intelligent Embedded Fan System Based on YOLOv2 Lightweight Algorithm
por: Wei, YongHui, et al.
Publicado: (2022) -
A lightweight YOLOv3 algorithm used for safety helmet detection
por: Deng, Lixia, et al.
Publicado: (2022)