Cargando…
Lutein/Zeaxanthin Isomers and Quercetagetin Combination Safeguards the Retina from Photo-Oxidative Damage by Modulating Neuroplasticity Markers and the Nrf2 Pathway
Exposure to light-emitting diode (LED) light is a primary cause of retinal damage, resulting in vision loss. Several plant-derived substances, such as lutein and quercetagetin (QCG), show promise in supporting eye health. In this study, the impact of lutein/zeaxanthin (L/Z, Lutemax 2020) and QCG wer...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675275/ https://www.ncbi.nlm.nih.gov/pubmed/38004409 http://dx.doi.org/10.3390/ph16111543 |
Sumario: | Exposure to light-emitting diode (LED) light is a primary cause of retinal damage, resulting in vision loss. Several plant-derived substances, such as lutein and quercetagetin (QCG), show promise in supporting eye health. In this study, the impact of lutein/zeaxanthin (L/Z, Lutemax 2020) and QCG were evaluated individually and together in a rat model of LED-induced retinal damage. A total of 63 Wistar rats were allocated into nine groups (n = 7). For 28 days, the rats received L/Z (10 or 20 mg/kg BW), quercetin (QC, 20 mg/kg BW), QCG (10 or 20 mg/kg BW), or a mixture of different lutein and QCG dosages, after which they were exposed to LED light for 48 h. LED exposure led to a spike in serum malondialdehyde (MDA) and inflammatory cytokines, as well as an increase in retinal NF-κB, ICAM, GFAP, and MCP-1 levels (p < 0.0001 for all). It also reduced serum antioxidant enzyme activities and retinal Nrf2, HO-1, GAP43, NCAM, and outer nuclear layer (ONL) thickness (p < 0.0001 for all). However, administering L/Z and QCG, particularly a 1:1 combination of L/Z and QCG at 20 mg/kg, effectively reversed these changes. The treatment suppressed NF-κB, ICAM, GFAP, and MCP-1 while enhancing Nrf2, HO-1, GAP43, and NCAM and preventing ONL thickness reduction in LED-induced retinal damage rats. In conclusion, while LED light exposure caused retinal damage, treatment with L/Z, QC, and QCG, particularly a combined L/Z and QCG regimen, exhibited protective effects on the retina. This is possibly due to the modulation of neuroplasticity markers and nuclear transcription factors in the rats’ retinal cells. |
---|