Cargando…
Vibration-Based Wear Condition Estimation of Journal Bearings Using Convolutional Autoencoders
Predictive maintenance is considered a proactive approach that capitalizes on advanced sensing technologies and data analytics to anticipate potential equipment malfunctions, enabling cost savings and improved operational efficiency. For journal bearings, predictive maintenance assumes critical sign...
Autores principales: | Ates, Cihan, Höfchen, Tobias, Witt, Mario, Koch, Rainer, Bauer, Hans-Jörg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675279/ https://www.ncbi.nlm.nih.gov/pubmed/38005598 http://dx.doi.org/10.3390/s23229212 |
Ejemplares similares
-
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Supervised Health Stage Prediction Using Convolutional Neural Networks for Bearing Wear
por: Suh, Sungho, et al.
Publicado: (2020) -
Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder
por: Shi, Hongmei, et al.
Publicado: (2020) -
Orthogonal Local Image Descriptors with Convolutional Autoencoders
por: Roman-Rangel, Edgar, et al.
Publicado: (2020) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019)