Cargando…
Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries
Organic rechargeable batteries that do not use any scarce heavy metals are candidates for the next generation of rechargeable batteries; although, it is not easy to realize both high capacity and long cycle life. Organic compounds linked by amide bonds are expected to have superior recycling propert...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675302/ https://www.ncbi.nlm.nih.gov/pubmed/38006119 http://dx.doi.org/10.3390/polym15224395 |
_version_ | 1785149802762207232 |
---|---|
author | Yao, Masaru Sano, Hikaru Ando, Hisanori |
author_facet | Yao, Masaru Sano, Hikaru Ando, Hisanori |
author_sort | Yao, Masaru |
collection | PubMed |
description | Organic rechargeable batteries that do not use any scarce heavy metals are candidates for the next generation of rechargeable batteries; although, it is not easy to realize both high capacity and long cycle life. Organic compounds linked by amide bonds are expected to have superior recycling properties after battery degradation, since they will become a single monomer upon hydrolysis. In this study, anthraquinone was chosen as a model redox active unit, and dimeric and trimeric compounds were synthesized, their cycle performances as electrode materials for use in rechargeable batteries were compared, and a trend in which oligomerization improves cycle properties was confirmed. Furthermore, quantum chemistry calculations suggest that oligomerization decreases solubility, which would support a longer life for oligomerized compounds. This methodology will lead to the development of organic rechargeable batteries with further environmental benefits. |
format | Online Article Text |
id | pubmed-10675302 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106753022023-11-13 Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries Yao, Masaru Sano, Hikaru Ando, Hisanori Polymers (Basel) Article Organic rechargeable batteries that do not use any scarce heavy metals are candidates for the next generation of rechargeable batteries; although, it is not easy to realize both high capacity and long cycle life. Organic compounds linked by amide bonds are expected to have superior recycling properties after battery degradation, since they will become a single monomer upon hydrolysis. In this study, anthraquinone was chosen as a model redox active unit, and dimeric and trimeric compounds were synthesized, their cycle performances as electrode materials for use in rechargeable batteries were compared, and a trend in which oligomerization improves cycle properties was confirmed. Furthermore, quantum chemistry calculations suggest that oligomerization decreases solubility, which would support a longer life for oligomerized compounds. This methodology will lead to the development of organic rechargeable batteries with further environmental benefits. MDPI 2023-11-13 /pmc/articles/PMC10675302/ /pubmed/38006119 http://dx.doi.org/10.3390/polym15224395 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yao, Masaru Sano, Hikaru Ando, Hisanori Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries |
title | Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries |
title_full | Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries |
title_fullStr | Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries |
title_full_unstemmed | Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries |
title_short | Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries |
title_sort | recycling compatible organic electrode materials containing amide bonds for use in rechargeable batteries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675302/ https://www.ncbi.nlm.nih.gov/pubmed/38006119 http://dx.doi.org/10.3390/polym15224395 |
work_keys_str_mv | AT yaomasaru recyclingcompatibleorganicelectrodematerialscontainingamidebondsforuseinrechargeablebatteries AT sanohikaru recyclingcompatibleorganicelectrodematerialscontainingamidebondsforuseinrechargeablebatteries AT andohisanori recyclingcompatibleorganicelectrodematerialscontainingamidebondsforuseinrechargeablebatteries |