Cargando…
An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning
Federated learning (FL) is a distributed machine learning paradigm that enables a large number of clients to collaboratively train models without sharing data. However, when the private dataset between clients is not independent and identically distributed (non-IID), the local training objective is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675381/ https://www.ncbi.nlm.nih.gov/pubmed/38005610 http://dx.doi.org/10.3390/s23229226 |
_version_ | 1785149812955414528 |
---|---|
author | Meng, Xutao Li, Yong Lu, Jianchao Ren, Xianglin |
author_facet | Meng, Xutao Li, Yong Lu, Jianchao Ren, Xianglin |
author_sort | Meng, Xutao |
collection | PubMed |
description | Federated learning (FL) is a distributed machine learning paradigm that enables a large number of clients to collaboratively train models without sharing data. However, when the private dataset between clients is not independent and identically distributed (non-IID), the local training objective is inconsistent with the global training objective, which possibly causes the convergence speed of FL to slow down, or even not converge. In this paper, we design a novel FL framework based on deep reinforcement learning (DRL), named FedRLCS. In FedRLCS, we primarily improved the greedy strategy and action space of the double DQN (DDQN) algorithm, enabling the server to select the optimal subset of clients from a non-IID dataset to participate in training, thereby accelerating model convergence and reaching the target accuracy in fewer communication epochs. In simulation experiments, we partition multiple datasets with different strategies to simulate non-IID on local clients. We adopt four models (LeNet-5, MobileNetV2, ResNet-18, ResNet-34) on the four datasets (CIFAR-10, CIFAR-100, NICO, Tiny ImageNet), respectively, and conduct comparative experiments with five state-of-the-art non-IID FL methods. Experimental results show that FedRLCS reduces the number of communication rounds required by 10–70% with the same target accuracy without increasing the computation and storage costs for all clients. |
format | Online Article Text |
id | pubmed-10675381 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106753812023-11-16 An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning Meng, Xutao Li, Yong Lu, Jianchao Ren, Xianglin Sensors (Basel) Article Federated learning (FL) is a distributed machine learning paradigm that enables a large number of clients to collaboratively train models without sharing data. However, when the private dataset between clients is not independent and identically distributed (non-IID), the local training objective is inconsistent with the global training objective, which possibly causes the convergence speed of FL to slow down, or even not converge. In this paper, we design a novel FL framework based on deep reinforcement learning (DRL), named FedRLCS. In FedRLCS, we primarily improved the greedy strategy and action space of the double DQN (DDQN) algorithm, enabling the server to select the optimal subset of clients from a non-IID dataset to participate in training, thereby accelerating model convergence and reaching the target accuracy in fewer communication epochs. In simulation experiments, we partition multiple datasets with different strategies to simulate non-IID on local clients. We adopt four models (LeNet-5, MobileNetV2, ResNet-18, ResNet-34) on the four datasets (CIFAR-10, CIFAR-100, NICO, Tiny ImageNet), respectively, and conduct comparative experiments with five state-of-the-art non-IID FL methods. Experimental results show that FedRLCS reduces the number of communication rounds required by 10–70% with the same target accuracy without increasing the computation and storage costs for all clients. MDPI 2023-11-16 /pmc/articles/PMC10675381/ /pubmed/38005610 http://dx.doi.org/10.3390/s23229226 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Meng, Xutao Li, Yong Lu, Jianchao Ren, Xianglin An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning |
title | An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning |
title_full | An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning |
title_fullStr | An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning |
title_full_unstemmed | An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning |
title_short | An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning |
title_sort | optimization method for non-iid federated learning based on deep reinforcement learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675381/ https://www.ncbi.nlm.nih.gov/pubmed/38005610 http://dx.doi.org/10.3390/s23229226 |
work_keys_str_mv | AT mengxutao anoptimizationmethodfornoniidfederatedlearningbasedondeepreinforcementlearning AT liyong anoptimizationmethodfornoniidfederatedlearningbasedondeepreinforcementlearning AT lujianchao anoptimizationmethodfornoniidfederatedlearningbasedondeepreinforcementlearning AT renxianglin anoptimizationmethodfornoniidfederatedlearningbasedondeepreinforcementlearning AT mengxutao optimizationmethodfornoniidfederatedlearningbasedondeepreinforcementlearning AT liyong optimizationmethodfornoniidfederatedlearningbasedondeepreinforcementlearning AT lujianchao optimizationmethodfornoniidfederatedlearningbasedondeepreinforcementlearning AT renxianglin optimizationmethodfornoniidfederatedlearningbasedondeepreinforcementlearning |