Cargando…
An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning
Federated learning (FL) is a distributed machine learning paradigm that enables a large number of clients to collaboratively train models without sharing data. However, when the private dataset between clients is not independent and identically distributed (non-IID), the local training objective is...
Autores principales: | Meng, Xutao, Li, Yong, Lu, Jianchao, Ren, Xianglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675381/ https://www.ncbi.nlm.nih.gov/pubmed/38005610 http://dx.doi.org/10.3390/s23229226 |
Ejemplares similares
-
DAG-Based Blockchain Sharding for Secure Federated Learning with Non-IID Data
por: Lee, Jungjae, et al.
Publicado: (2022) -
Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data
por: Seol, Mihye, et al.
Publicado: (2023) -
LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
por: Huang, Li, et al.
Publicado: (2020) -
Fair detection of poisoning attacks in federated learning on non-i.i.d. data
por: Singh, Ashneet Khandpur, et al.
Publicado: (2023) -
Cross-Domain Federated Data Modeling on Non-IID Data
por: Chai, Baobao, et al.
Publicado: (2022)