Cargando…

Utility of a Novel Micro-Spraying Device for Intranasal Administration of Drug Solutions to Mice

Intranasal administration has attracted attention as a means of delivering drugs because it bypasses the blood–brain barrier. However, conventional intranasal administration of drug solutions to mice using the micropipette method (MP method) is complicated and time-consuming because it requires smal...

Descripción completa

Detalles Bibliográficos
Autores principales: Suzuki, Naoto, Tanigawa, Hiroaki, Nagatomo, Taiki, Miyagishi, Hiroko, Kanazawa, Takanori, Suzuki, Toyofumi, Kosuge, Yasuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675388/
https://www.ncbi.nlm.nih.gov/pubmed/38004533
http://dx.doi.org/10.3390/pharmaceutics15112553
Descripción
Sumario:Intranasal administration has attracted attention as a means of delivering drugs because it bypasses the blood–brain barrier. However, conventional intranasal administration of drug solutions to mice using the micropipette method (MP method) is complicated and time-consuming because it requires small doses to be administered under inhalation anesthesia. This study evaluated the effectiveness of a novel intranasal administration method using Micro FPS™, a novel micro-spraying device (the MSD method). The MSD method allowed more reliable administration of the solution to the nasal mucosa than the MP method did. The transfer of inulin, a model water-soluble macromolecule compound, to the olfactory bulb and brain (cerebrum, cerebellum, brainstem, and striatum) was similar with the two methods. It also allowed the drug to be administered in a shorter time. These results suggest that the MSD method is simpler and more rapid than the MP method for intranasal administration of drugs to mice and achieves comparable delivery of inulin to the olfactory bulb and brain. Therefore, the Micro FPS™ device is a potentially useful tool for intranasal drug administration to rodents and could facilitate the development of intranasal formulations, contributing to drug development for central nervous system diseases.