Cargando…
Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network
Fatigue of miners is caused by intensive workloads, long working hours, and shift-work schedules. It is one of the major factors increasing the risk of safety problems and work mistakes. Examining the detection of miner fatigue is important because it can potentially prevent work accidents and impro...
Autores principales: | Xu, Lili, Li, Jizu, Feng, Ding |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675395/ https://www.ncbi.nlm.nih.gov/pubmed/38005443 http://dx.doi.org/10.3390/s23229055 |
Ejemplares similares
-
Identifying Amnestic Mild Cognitive Impairment With Convolutional Neural Network Adapted to the Spectral Entropy Heat Map of the Electroencephalogram
por: Li, Xin, et al.
Publicado: (2022) -
Impact of Visual Design Elements and Principles in Human Electroencephalogram Brain Activity Assessed with Spectral Methods and Convolutional Neural Networks
por: Cabrera, Francisco E., et al.
Publicado: (2021) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Detection of sleep apnea from single-channel electroencephalogram (EEG) using an explainable convolutional neural network (CNN)
por: Barnes, Lachlan D., et al.
Publicado: (2022)