Cargando…
Smart Buildings: Water Leakage Detection Using TinyML
The escalating global water usage and the increasing strain on major cities due to water shortages highlights the critical need for efficient water management practices. In water-stressed regions worldwide, significant water wastage is primarily attributed to leakages, inefficient use, and aging inf...
Autores principales: | Atanane, Othmane, Mourhir, Asmaa, Benamar, Nabil, Zennaro, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675406/ https://www.ncbi.nlm.nih.gov/pubmed/38005596 http://dx.doi.org/10.3390/s23229210 |
Ejemplares similares
-
TinyML
por: Warden, Pete
Publicado: (2019) -
DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning
por: Alajlan, Norah N., et al.
Publicado: (2023) -
Robustifying the Deployment of tinyML Models for Autonomous Mini-Vehicles
por: de Prado, Miguel, et al.
Publicado: (2021) -
An Adaptable and Unsupervised TinyML Anomaly Detection System for Extreme Industrial Environments †
por: Antonini, Mattia, et al.
Publicado: (2023) -
A TinyML Deep Learning Approach for Indoor Tracking of Assets †
por: Avellaneda, Diego, et al.
Publicado: (2023)