Cargando…

A Novel ST-YOLO Network for Steel-Surface-Defect Detection

Recent progress has been made in defect detection using methods based on deep learning, but there are still formidable obstacles. Defect images have rich semantic levels and diverse morphological features, and the model is dynamically changing due to ongoing learning. In response to these issues, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Hongtao, Zhang, Zhisheng, Zhao, Junai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675464/
https://www.ncbi.nlm.nih.gov/pubmed/38005538
http://dx.doi.org/10.3390/s23229152
Descripción
Sumario:Recent progress has been made in defect detection using methods based on deep learning, but there are still formidable obstacles. Defect images have rich semantic levels and diverse morphological features, and the model is dynamically changing due to ongoing learning. In response to these issues, this article proposes a shunt feature fusion model (ST-YOLO) for steel-defect detection, which uses a split feature network structure and a self-correcting transmission allocation method for training. The network structure is designed to specialize the process of classification and localization tasks for different computing needs. By using the self-correction criteria of adaptive sampling and dynamic label allocation, more sufficiently high-quality samples are utilized to adjust data distribution and optimize the training process. Our model achieved better performance on the NEU-DET datasets and the GC10-DET datasets and was validated to exhibit excellent performance.