Cargando…
A Novel ST-YOLO Network for Steel-Surface-Defect Detection
Recent progress has been made in defect detection using methods based on deep learning, but there are still formidable obstacles. Defect images have rich semantic levels and diverse morphological features, and the model is dynamically changing due to ongoing learning. In response to these issues, th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675464/ https://www.ncbi.nlm.nih.gov/pubmed/38005538 http://dx.doi.org/10.3390/s23229152 |
_version_ | 1785149821180444672 |
---|---|
author | Ma, Hongtao Zhang, Zhisheng Zhao, Junai |
author_facet | Ma, Hongtao Zhang, Zhisheng Zhao, Junai |
author_sort | Ma, Hongtao |
collection | PubMed |
description | Recent progress has been made in defect detection using methods based on deep learning, but there are still formidable obstacles. Defect images have rich semantic levels and diverse morphological features, and the model is dynamically changing due to ongoing learning. In response to these issues, this article proposes a shunt feature fusion model (ST-YOLO) for steel-defect detection, which uses a split feature network structure and a self-correcting transmission allocation method for training. The network structure is designed to specialize the process of classification and localization tasks for different computing needs. By using the self-correction criteria of adaptive sampling and dynamic label allocation, more sufficiently high-quality samples are utilized to adjust data distribution and optimize the training process. Our model achieved better performance on the NEU-DET datasets and the GC10-DET datasets and was validated to exhibit excellent performance. |
format | Online Article Text |
id | pubmed-10675464 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106754642023-11-13 A Novel ST-YOLO Network for Steel-Surface-Defect Detection Ma, Hongtao Zhang, Zhisheng Zhao, Junai Sensors (Basel) Article Recent progress has been made in defect detection using methods based on deep learning, but there are still formidable obstacles. Defect images have rich semantic levels and diverse morphological features, and the model is dynamically changing due to ongoing learning. In response to these issues, this article proposes a shunt feature fusion model (ST-YOLO) for steel-defect detection, which uses a split feature network structure and a self-correcting transmission allocation method for training. The network structure is designed to specialize the process of classification and localization tasks for different computing needs. By using the self-correction criteria of adaptive sampling and dynamic label allocation, more sufficiently high-quality samples are utilized to adjust data distribution and optimize the training process. Our model achieved better performance on the NEU-DET datasets and the GC10-DET datasets and was validated to exhibit excellent performance. MDPI 2023-11-13 /pmc/articles/PMC10675464/ /pubmed/38005538 http://dx.doi.org/10.3390/s23229152 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ma, Hongtao Zhang, Zhisheng Zhao, Junai A Novel ST-YOLO Network for Steel-Surface-Defect Detection |
title | A Novel ST-YOLO Network for Steel-Surface-Defect Detection |
title_full | A Novel ST-YOLO Network for Steel-Surface-Defect Detection |
title_fullStr | A Novel ST-YOLO Network for Steel-Surface-Defect Detection |
title_full_unstemmed | A Novel ST-YOLO Network for Steel-Surface-Defect Detection |
title_short | A Novel ST-YOLO Network for Steel-Surface-Defect Detection |
title_sort | novel st-yolo network for steel-surface-defect detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675464/ https://www.ncbi.nlm.nih.gov/pubmed/38005538 http://dx.doi.org/10.3390/s23229152 |
work_keys_str_mv | AT mahongtao anovelstyolonetworkforsteelsurfacedefectdetection AT zhangzhisheng anovelstyolonetworkforsteelsurfacedefectdetection AT zhaojunai anovelstyolonetworkforsteelsurfacedefectdetection AT mahongtao novelstyolonetworkforsteelsurfacedefectdetection AT zhangzhisheng novelstyolonetworkforsteelsurfacedefectdetection AT zhaojunai novelstyolonetworkforsteelsurfacedefectdetection |