Cargando…
A Novel ST-YOLO Network for Steel-Surface-Defect Detection
Recent progress has been made in defect detection using methods based on deep learning, but there are still formidable obstacles. Defect images have rich semantic levels and diverse morphological features, and the model is dynamically changing due to ongoing learning. In response to these issues, th...
Autores principales: | Ma, Hongtao, Zhang, Zhisheng, Zhao, Junai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675464/ https://www.ncbi.nlm.nih.gov/pubmed/38005538 http://dx.doi.org/10.3390/s23229152 |
Ejemplares similares
-
EFC-YOLO: An Efficient Surface-Defect-Detection Algorithm for Steel Strips
por: Li, Yanshun, et al.
Publicado: (2023) -
MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface
por: Guo, Zexuan, et al.
Publicado: (2022) -
Lightweight Network DCR-YOLO for Surface Defect Detection on Printed Circuit Boards
por: Jiang, Yuanyuan, et al.
Publicado: (2023) -
Mixed Receptive Fields Augmented YOLO with Multi-Path Spatial Pyramid Pooling for Steel Surface Defect Detection
por: Xia, Kewen, et al.
Publicado: (2023) -
MR-YOLO: An Improved YOLOv5 Network for Detecting Magnetic Ring Surface Defects
por: Lang, Xianli, et al.
Publicado: (2022)