Cargando…
Derivation of Highly Predictive 3D-QSAR Models for hERG Channel Blockers Based on the Quantum Artificial Neural Network Algorithm
The hERG potassium channel serves as an annexed target for drug discovery because the associated off-target inhibitory activity may cause serious cardiotoxicity. Quantitative structure–activity relationship (QSAR) models were developed to predict inhibitory activities against the hERG potassium chan...
Autores principales: | Kim, Taeho, Chung, Kee-Choo, Park, Hwangseo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675541/ https://www.ncbi.nlm.nih.gov/pubmed/38004375 http://dx.doi.org/10.3390/ph16111509 |
Ejemplares similares
-
Predicting hERG channel blockers with directed message passing neural networks
por: Shan, Mengyi, et al.
Publicado: (2022) -
Quantum Artificial Neural Network Approach to Derive a Highly Predictive 3D-QSAR Model for Blood–Brain Barrier Passage
por: Kim, Taeho, et al.
Publicado: (2021) -
A k-nearest neighbor classification of hERG K(+) channel blockers
por: Chavan, Swapnil, et al.
Publicado: (2016) -
The N-linker region of hERG1a upregulates hERG1b potassium channels
por: Johnson, Ashley A., et al.
Publicado: (2022) -
Facilitation of I(Kr) current by some hERG channel blockers suppresses early afterdepolarizations
por: Furutani, Kazuharu, et al.
Publicado: (2019)