Cargando…
Attention-Assisted Feature Comparison and Feature Enhancement for Class-Agnostic Counting
In this study, we address the class-agnostic counting (CAC) challenge, aiming to count instances in a query image, using just a few exemplars. Recent research has shifted towards few-shot counting (FSC), which involves counting previously unseen object classes. We present ACECount, an FSC framework...
Autores principales: | Dong, Liang, Yu, Yian, Zhang, Di, Huo, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675645/ https://www.ncbi.nlm.nih.gov/pubmed/38005514 http://dx.doi.org/10.3390/s23229126 |
Ejemplares similares
-
A feature agnostic approach for glaucoma detection in OCT volumes
por: Maetschke, Stefan, et al.
Publicado: (2019) -
Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data
por: Liu, Zhenqiu, et al.
Publicado: (2013) -
The Bacillus Agnostic
Publicado: (1911) -
COMAL: compositional multi-scale feature enhanced learning for crowd counting
por: Zhou, Fangbo, et al.
Publicado: (2022) -
Feature Counting Is Impaired When Shifting Attention Between the Eyes in Adults With Amblyopia
por: Hou, Chuan, et al.
Publicado: (2021)