Cargando…
Quantitative and Qualitative Analysis of Agricultural Fields Based on Aerial Multispectral Images Using Neural Networks
This article presents an integrated system that uses the capabilities of unmanned aerial vehicles (UAVs) to perform a comprehensive crop analysis, combining qualitative and quantitative evaluations for efficient agricultural management. A convolutional neural network-based model, Detectron2, serves...
Autores principales: | Strzępek, Krzysztof, Salach, Mateusz, Trybus, Bartosz, Siwiec, Karol, Pawłowicz, Bartosz, Paszkiewicz, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675671/ https://www.ncbi.nlm.nih.gov/pubmed/38005637 http://dx.doi.org/10.3390/s23229251 |
Ejemplares similares
-
Dynamic RFID Identification in Urban Traffic Management Systems
por: Pawłowicz, Bartosz, et al.
Publicado: (2020) -
Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS
por: Hossen, Md Abir, et al.
Publicado: (2021) -
Advanced Biomimetic Multispectral Curved Compound Eye Camera for Aerial Multispectral Imaging in a Large Field of View
por: Zhang, Yuanjie, et al.
Publicado: (2023) -
Multispectral Detection of Commercial Unmanned Aerial Vehicles
por: Farlik, Jan, et al.
Publicado: (2019) -
Classification of Soybean Pubescence from Multispectral Aerial Imagery
por: Bruce, Robert W., et al.
Publicado: (2021)