Cargando…
The Influence of Long Carbon Chains on the Antioxidant and Anticancer Properties of N-Substituted Benzisoselenazolones and Corresponding Diselenides
Organoselenium compounds are well-known for their numerous biocapacities, which result from the uniqueness of the selenium atom and the possibility of constructing heterorganic molecules that can mimic the activity of selenoenzymes, crucial for a multitude of important physiological processes. In th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675721/ https://www.ncbi.nlm.nih.gov/pubmed/38004426 http://dx.doi.org/10.3390/ph16111560 |
Sumario: | Organoselenium compounds are well-known for their numerous biocapacities, which result from the uniqueness of the selenium atom and the possibility of constructing heterorganic molecules that can mimic the activity of selenoenzymes, crucial for a multitude of important physiological processes. In this paper, we have synthesized a series of N-substituted benzisoselenazolones and corresponding diphenyl diselenides possessing lipophilic long carbon chains, solely or with additional polar insets: phenyl linkers and ester groups. Evaluation of their antioxidant and cytotoxic activity revealed an increased H(2)O(2)-reduction potential of diphenyl diselenides bearing N-octyl, ethyl N-(12-dodecanoate)- and N-(8-octanoate) groups, elevated radical scavenging activity of 2,2′-diselenobis(N-dodecylbenzamide) and a promising cytotoxic potential of N-(4-dodecyl)phenylbenzisoselenazol-3(2H)-one. |
---|