Cargando…
Electrocardiogram-Based Biometric Identification Using Mixed Feature Extraction and Sparse Representation
(1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, thi...
Autores principales: | Zhang, Xu, Liu, Qifeng, He, Dong, Suo, Hui, Zhao, Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675745/ https://www.ncbi.nlm.nih.gov/pubmed/38005564 http://dx.doi.org/10.3390/s23229179 |
Ejemplares similares
-
Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
por: Gan, Bin, et al.
Publicado: (2014) -
Medical Image Fusion Based on Feature Extraction and Sparse Representation
por: Fei, Yin, et al.
Publicado: (2017) -
Image Target Recognition via Mixed Feature-Based Joint Sparse Representation
por: Wang, Xin, et al.
Publicado: (2020) -
On biometric systems: electrocardiogram Gaussianity and data synthesis
por: Louis, Wael, et al.
Publicado: (2017) -
Electrocardiogram Biometrics Using Transformer’s Self-Attention Mechanism for Sequence Pair Feature Extractor and Flexible Enrollment Scope Identification
por: Chee, Kai Jye, et al.
Publicado: (2022)