Cargando…
Fast Stray Light Performance Evaluation Based on BSDF and Radiative Transfer Theory
Evaluating the stray light cancellation performance of an optical system is an essential step in the search for superior optical systems. However, the existing evaluation methods, such as the Monte Carlo method and the ray tracing method, suffer from the problems of vast arithmetic and cumbersome pr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675779/ https://www.ncbi.nlm.nih.gov/pubmed/38005567 http://dx.doi.org/10.3390/s23229182 |
_version_ | 1785149852778233856 |
---|---|
author | Zeng, Chaoli Xia, Guangqing Zhong, Xing Li, Lei Qu, Zheng Yang, Qinhai Wang, Yuanhang |
author_facet | Zeng, Chaoli Xia, Guangqing Zhong, Xing Li, Lei Qu, Zheng Yang, Qinhai Wang, Yuanhang |
author_sort | Zeng, Chaoli |
collection | PubMed |
description | Evaluating the stray light cancellation performance of an optical system is an essential step in the search for superior optical systems. However, the existing evaluation methods, such as the Monte Carlo method and the ray tracing method, suffer from the problems of vast arithmetic and cumbersome processes. In this paper, a method for a rapid stray light performance evaluation model and quantitatively determining high-magnitude stray light outside the field of view are proposed by adopting the radiative transfer theory based on the scattering property of the bidirectional scattering distribution function (BSDF). Under the global coordinates, based on the derivation of the light vector variation relationship in the near-linear system, the specific structural properties of the off-axis reflective optical system, and the specular scattering properties, a fast quantitative evaluation model of the optical system’s stray light elimination capability is constructed. A loop nesting procedure was designed based on this model, and its validity was verified by an off-axis reflective optical system. It successfully fitted the point source transmittance (PST) curve in the range of specular radiation reception angles and quantitatively predicted the prominence due to incident stray light outside the field of view. This method does not require multiple software to work in concert and requires only 10(–5) orders of magnitude of computing time, which is suitable for the rapid stray light assessment and structural screening of off-axis reflective optical systems with a good symmetry. The method is promising for improving imaging radiation accuracy and developing lightweight space cameras with low stray light effects. |
format | Online Article Text |
id | pubmed-10675779 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106757792023-11-14 Fast Stray Light Performance Evaluation Based on BSDF and Radiative Transfer Theory Zeng, Chaoli Xia, Guangqing Zhong, Xing Li, Lei Qu, Zheng Yang, Qinhai Wang, Yuanhang Sensors (Basel) Article Evaluating the stray light cancellation performance of an optical system is an essential step in the search for superior optical systems. However, the existing evaluation methods, such as the Monte Carlo method and the ray tracing method, suffer from the problems of vast arithmetic and cumbersome processes. In this paper, a method for a rapid stray light performance evaluation model and quantitatively determining high-magnitude stray light outside the field of view are proposed by adopting the radiative transfer theory based on the scattering property of the bidirectional scattering distribution function (BSDF). Under the global coordinates, based on the derivation of the light vector variation relationship in the near-linear system, the specific structural properties of the off-axis reflective optical system, and the specular scattering properties, a fast quantitative evaluation model of the optical system’s stray light elimination capability is constructed. A loop nesting procedure was designed based on this model, and its validity was verified by an off-axis reflective optical system. It successfully fitted the point source transmittance (PST) curve in the range of specular radiation reception angles and quantitatively predicted the prominence due to incident stray light outside the field of view. This method does not require multiple software to work in concert and requires only 10(–5) orders of magnitude of computing time, which is suitable for the rapid stray light assessment and structural screening of off-axis reflective optical systems with a good symmetry. The method is promising for improving imaging radiation accuracy and developing lightweight space cameras with low stray light effects. MDPI 2023-11-14 /pmc/articles/PMC10675779/ /pubmed/38005567 http://dx.doi.org/10.3390/s23229182 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zeng, Chaoli Xia, Guangqing Zhong, Xing Li, Lei Qu, Zheng Yang, Qinhai Wang, Yuanhang Fast Stray Light Performance Evaluation Based on BSDF and Radiative Transfer Theory |
title | Fast Stray Light Performance Evaluation Based on BSDF and Radiative Transfer Theory |
title_full | Fast Stray Light Performance Evaluation Based on BSDF and Radiative Transfer Theory |
title_fullStr | Fast Stray Light Performance Evaluation Based on BSDF and Radiative Transfer Theory |
title_full_unstemmed | Fast Stray Light Performance Evaluation Based on BSDF and Radiative Transfer Theory |
title_short | Fast Stray Light Performance Evaluation Based on BSDF and Radiative Transfer Theory |
title_sort | fast stray light performance evaluation based on bsdf and radiative transfer theory |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675779/ https://www.ncbi.nlm.nih.gov/pubmed/38005567 http://dx.doi.org/10.3390/s23229182 |
work_keys_str_mv | AT zengchaoli faststraylightperformanceevaluationbasedonbsdfandradiativetransfertheory AT xiaguangqing faststraylightperformanceevaluationbasedonbsdfandradiativetransfertheory AT zhongxing faststraylightperformanceevaluationbasedonbsdfandradiativetransfertheory AT lilei faststraylightperformanceevaluationbasedonbsdfandradiativetransfertheory AT quzheng faststraylightperformanceevaluationbasedonbsdfandradiativetransfertheory AT yangqinhai faststraylightperformanceevaluationbasedonbsdfandradiativetransfertheory AT wangyuanhang faststraylightperformanceevaluationbasedonbsdfandradiativetransfertheory |