Cargando…
Improved YOLOv3 Integrating SENet and Optimized GIoU Loss for Occluded Pedestrian Detection
Occluded pedestrian detection faces huge challenges. False positives and false negatives in crowd occlusion scenes will reduce the accuracy of occluded pedestrian detection. To overcome this problem, we proposed an improved you-only-look-once version 3 (YOLOv3) based on squeeze-and-excitation networ...
Autores principales: | Zhang, Qiangbo, Liu, Yunxiang, Zhang, Yu, Zong, Ming, Zhu, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675795/ https://www.ncbi.nlm.nih.gov/pubmed/38005475 http://dx.doi.org/10.3390/s23229089 |
Ejemplares similares
-
3D-GIoU: 3D Generalized Intersection over Union for Object Detection in Point Cloud
por: Xu, Jun, et al.
Publicado: (2019) -
Gio Ponti : the complete work 1923-1978 /
por: Licitra Ponti, Lisa
Publicado: (1990) -
Pedestrian detection algorithm integrating large kernel attention and YOLOV5 lightweight model
por: Yin, Yuping, et al.
Publicado: (2023) -
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
por: Lv, Haohui, et al.
Publicado: (2022) -
Improved YOLOv4 for Pedestrian Detection and Counting in UAV Images
por: Kong, Hao, et al.
Publicado: (2022)