Cargando…
Genomic and transcriptomic survey of bryozoan Hox and ParaHox genes with emphasis on phylactolaemate bryozoans
BACKGROUND: Bryozoans are mostly sessile aquatic colonial invertebrates belonging to the clade Lophotrochozoa, which unites many protostome bilaterian phyla such as molluscs, annelids and brachiopods. While Hox and ParaHox genes have been extensively studied in various lophotrochozoan lineages, inve...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675955/ https://www.ncbi.nlm.nih.gov/pubmed/38001438 http://dx.doi.org/10.1186/s12864-023-09826-z |
Sumario: | BACKGROUND: Bryozoans are mostly sessile aquatic colonial invertebrates belonging to the clade Lophotrochozoa, which unites many protostome bilaterian phyla such as molluscs, annelids and brachiopods. While Hox and ParaHox genes have been extensively studied in various lophotrochozoan lineages, investigations on Hox and ParaHox gene complements in bryozoans are scarce. RESULTS: Herein, we present the most comprehensive survey of Hox and ParaHox gene complements in bryozoans using four genomes and 35 transcriptomes representing all bryozoan clades: Cheilostomata, Ctenostomata, Cyclostomata and Phylactolaemata. Using similarity searches, phylogenetic analyses and detailed manual curation, we have identified five Hox genes in bryozoans (pb, Dfd, Lox5, Lox4 and Post2) and one ParaHox gene (Cdx). Interestingly, we observed lineage-specific duplication of certain Hox and ParaHox genes (Dfd, Lox5 and Cdx) in some bryozoan lineages. CONCLUSIONS: The bryozoan Hox cluster does not retain the ancestral lophotrochozoan condition but appears relatively simple (includes only five genes) and broken into two genomic regions, characterized by the loss and duplication of serval genes. Importantly, bryozoans share the lack of two Hox genes (Post1 and Scr) with their proposed sister-taxon, Phoronida, which suggests that those genes were missing in the most common ancestor of bryozoans and phoronids. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09826-z. |
---|