Cargando…
Accounting for clustering in automated variable selection using hospital data: a comparison of different LASSO approaches
BACKGROUND: Automated feature selection methods such as the Least Absolute Shrinkage and Selection Operator (LASSO) have recently gained importance in the prediction of quality-related outcomes as well as the risk-adjustment of quality indicators in healthcare. The methods that have been used so far...
Autores principales: | Bollmann, Stella, Groll, Andreas, Havranek, Michael M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675967/ https://www.ncbi.nlm.nih.gov/pubmed/38007454 http://dx.doi.org/10.1186/s12874-023-02081-6 |
Ejemplares similares
-
New adaptive lasso approaches for variable selection in automated pharmacovigilance signal detection
por: Courtois, Émeline, et al.
Publicado: (2021) -
Comparing Bayesian Variable Selection to Lasso Approaches for Applications in Psychology
por: Bainter, Sierra A., et al.
Publicado: (2023) -
Precision Lasso: accounting for correlations and linear dependencies in high-dimensional genomic data
por: Wang, Haohan, et al.
Publicado: (2019) -
Variable selection for causal mediation analysis using LASSO-based methods
por: Ye, Zhaoxin, et al.
Publicado: (2021) -
Classification and Selection of Biomarkers in Genomic Data Using LASSO
por: Ghosh, Debashis, et al.
Publicado: (2005)