Cargando…
Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis
BACKGROUND: Magnetic resonance imaging (MRI) is important for the early detection of axial spondyloarthritis (axSpA). We developed an artificial intelligence (AI) model for detecting sacroiliitis in patients with axSpA using MRI. METHODS: This study included MRI examinations of patients who underwen...
Autores principales: | Lee, Seulkee, Jeon, Uju, Lee, Ji Hyun, Kang, Seonyoung, Kim, Hyungjin, Lee, Jaejoon, Chung, Myung Jin, Cha, Hoon-Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676202/ https://www.ncbi.nlm.nih.gov/pubmed/38022576 http://dx.doi.org/10.3389/fimmu.2023.1278247 |
Ejemplares similares
-
A cluster analysis of patients with axial spondyloarthritis using tumour necrosis factor alpha inhibitors based on clinical characteristics
por: Lee, Seulkee, et al.
Publicado: (2021) -
Performances of machine learning algorithms in discriminating sacroiliitis features on MRI: a systematic review
por: Moon, Sun Jae, et al.
Publicado: (2023) -
Fatty corner lesions in T1-weighted magnetic resonance imaging as an alternative to sacroiliitis for diagnosis of axial spondyloarthritis
por: Chung, Ho Yin, et al.
Publicado: (2019) -
Increased risk of malignancy in patients with Takayasu’s arteritis: a population-based cohort study in Korea
por: Lee, Seulkee, et al.
Publicado: (2022) -
Immunohistological analysis of active sacroiliitis in patients with axial spondyloarthritis
por: Peng, Jianhua, et al.
Publicado: (2017)