Cargando…
Effect of data harmonization of multicentric dataset in ASD/TD classification
Machine Learning (ML) is nowadays an essential tool in the analysis of Magnetic Resonance Imaging (MRI) data, in particular in the identification of brain correlates in neurological and neurodevelopmental disorders. ML requires datasets of appropriate size for training, which in neuroimaging are typ...
Autores principales: | Serra, Giacomo, Mainas, Francesca, Golosio, Bruno, Retico, Alessandra, Oliva, Piernicola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676338/ https://www.ncbi.nlm.nih.gov/pubmed/38006422 http://dx.doi.org/10.1186/s40708-023-00210-x |
Ejemplares similares
-
Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in barely separable populations: An example from the ABIDE dataset
por: Saponaro, Sara, et al.
Publicado: (2022) -
Evaluation of Altered Functional Connections in Male Children With Autism Spectrum Disorders on Multiple-Site Data Optimized With Machine Learning
por: Spera, Giovanna, et al.
Publicado: (2019) -
Quantification of pulmonary involvement in COVID-19 pneumonia by means of a cascade of two U-nets: training and assessment on multiple datasets using different annotation criteria
por: Lizzi, Francesca, et al.
Publicado: (2021) -
Quantification of pulmonary involvement in COVID-19 pneumonia: an upgrade of the LungQuant software for lung CT segmentation
por: Lizzi, Francesca, et al.
Publicado: (2023) -
Pathways to peer interaction in ASD and TD through individual and dyadic joint-action motor abilities
por: Estrugo, Yael, et al.
Publicado: (2023)