Cargando…

Plasma disinfection procedures for surfaces in emergency service vehicles: a field trial at the German Red Cross

The demand for thorough disinfection within ambulances is essential, given the in-vehicle medical procedures and the potential high risk of infections due to patients' open wounds. One solution that can address this hygiene challenge involves the application of reactive products generated from...

Descripción completa

Detalles Bibliográficos
Autores principales: Schaal, Tom, Schmelz, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676353/
https://www.ncbi.nlm.nih.gov/pubmed/38007589
http://dx.doi.org/10.1038/s41598-023-47759-5
Descripción
Sumario:The demand for thorough disinfection within ambulances is essential, given the in-vehicle medical procedures and the potential high risk of infections due to patients' open wounds. One solution that can address this hygiene challenge involves the application of reactive products generated from atmospheric (air) oxygen and water vapor, activated through the use of cold plasma. Cold plasma's charged particles perforate the cell membranes of microorganisms. This process does not work in human cells, as proteins in the form of enzymes within the body break down the cold plasma and protect the cells. The study was done on an ambulance that was contaminated in eight places. Samples were taken from each site, and two surfaces measuring approximately 8 × 8 cm were carefully sealed and marked. These surfaces were deliberately contaminated by applying an Enterococcus faecium suspension of 8.5 × 107 CFU/mL using a sterile cotton swab. It was followed by the disinfection procedure, that was initiated with the PLASMOCAR device. It was positioned on the front workspace and operated for a duration of 30 min, utilizing the vehicle's onboard voltage. Throughout the operation, all doors and windows were closed and the vehicle's air conditioning system remained active. After the completion of the disinfection process, samples were collected from the surfaces for bacterial counts. A reduction of 3.73 log levels in initial bacteria was accomplished within the rescue vehicle for Enterococcus faecium, equivalent to a 10–fourfold reduction in bacteria, eliminating up to 99.99% of the initial microorganisms. This success makes the process well-suited and convenient as an ongoing "background" procedure to enhance the established disinfection procedures. The established disinfection procedures outlined in the hygiene plan must be promptly implemented whenever mechanical surface cleaning is required. The use of PLASMOCAR offers an extra layer of protection and security, significantly decreasing the risk of microorganism transmission through cross-contamination and aerosols. This is a significant benefit for the well-being of both staff and patients.