Cargando…

FollowNet: A Comprehensive Benchmark for Car-Following Behavior Modeling

Car-following is a control process in which a following vehicle adjusts its acceleration to keep a safe distance from the lead vehicle. Recently, there has been a booming of data-driven models that enable more accurate modeling of car-following through real-world driving datasets. Although there are...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xianda, Zhu, Meixin, Chen, Kehua, Wang, Pengqin, Lu, Hongliang, Zhong, Hui, Han, Xu, Wang, Xuesong, Wang, Yinhai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676377/
https://www.ncbi.nlm.nih.gov/pubmed/38007562
http://dx.doi.org/10.1038/s41597-023-02718-7
Descripción
Sumario:Car-following is a control process in which a following vehicle adjusts its acceleration to keep a safe distance from the lead vehicle. Recently, there has been a booming of data-driven models that enable more accurate modeling of car-following through real-world driving datasets. Although there are several public datasets available, their formats are not always consistent, making it challenging to determine the state-of-the-art models and how well a new model performs compared to existing ones. To address this gap and promote the development of microscopic traffic flow modeling, we establish the first public benchmark dataset for car-following behavior modeling. This benchmark consists of more than 80 K car-following events extracted from five public driving datasets under the same criteria. To give an overview of current progress in car-following modeling, we implemented and tested representative baseline models within the benchmark. The established benchmark provides researchers with consistent data formats and metrics for cross-comparing different car-following models, coming with open datasets and codes.