Cargando…
Surgical skill level classification model development using EEG and eye-gaze data and machine learning algorithms
The aim of this study was to develop machine learning classification models using electroencephalogram (EEG) and eye-gaze features to predict the level of surgical expertise in robot-assisted surgery (RAS). EEG and eye-gaze data were recorded from 11 participants who performed cystectomy, hysterecto...
Autores principales: | Shafiei, Somayeh B., Shadpour, Saeed, Mohler, James L., Sasangohar, Farzan, Gutierrez, Camille, Seilanian Toussi, Mehdi, Shafqat, Ambreen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10678814/ https://www.ncbi.nlm.nih.gov/pubmed/37864129 http://dx.doi.org/10.1007/s11701-023-01722-8 |
Ejemplares similares
-
Performance and learning rate prediction models development in FLS and RAS surgical tasks using electroencephalogram and eye gaze data and machine learning
por: Shafiei, Somayeh B., et al.
Publicado: (2023) -
Developing Surgical Skill Level Classification Model Using Visual Metrics and a Gradient Boosting Algorithm
por: Shafiei, Somayeh B., et al.
Publicado: (2023) -
Developing cognitive workload and performance evaluation models using functional brain network analysis
por: Shadpour, Saeed, et al.
Publicado: (2023) -
Tracking gaze position from EEG: Exploring the possibility of an EEG‐based virtual eye‐tracker
por: Sun, Rui, et al.
Publicado: (2023) -
Eye gaze patterns reveal how reasoning skills improve with experience
por: Guerra-Carrillo, Belén C., et al.
Publicado: (2018)